Evaluation of experimental data in the resolved resonance region

Contribution of the Nuclear Data Group of Cadarache

WPEC/SG 36, NEA, may 2012

Gilles Noguere

SPRC/LEPh, CEA Cadarache, F-13108Saint Paul Les Durance
Neutron Resonance Shape Analysis Codes
⇒ SAMMY (ORNL) and CONRAD (CEA/Cadarache)

Implicit Data Covariance Matrix with the AGS methodology
⇒ ^{235}U fission cross section

Use IDC matrix in the Neutron Resonance Shape Analysis codes
⇒ Data Covariance Matrix for ^{127}I transmission data

Time resolution of the facility
⇒ Analytic/Monte-Carlo descriptions of the resolution function

Generalization of the IDC methodology to Resonance-Parameter Covariance Matrix
⇒ CONRAD Marginalization
SAMMY: the option “USER-SUPPLIED IMPLICIT DATA COVARIANCE MATRIX” was implemented in 2002 to read AGS covariance files (Test Case Tr140, I129 transmission data).

Some Thoughts on the Data Analysis Process, N.M Larson, Second Research Co-ordination Meeting on Improvement of the Standard Cross Sections for Light Elements 13-17 October 2003 NIST, Gaithersburg, MD, USA

Use of Covariance Matrices in SAMMY, N.M. Larson, Wonder 2006, 9-11 October, 2006 Chateau de Cadarache, France

CONRAD: by default, CONRAD uses the IDC methodology to read AGS covariance files.

The covariance matrix associated with experimental data (cross section, transmission, or other) consists of several components. Statistical uncertainties on the measured quantity (counts) provide a diagonal contribution. Off-diagonal components arise from uncertainties on the parameters (such as normalization or background) that figure into the data reduction process; these are denoted systematic or “common” uncertainties, since they are common to many data points.

The full off-diagonal **Data Covariance Matrix** (DCM) can be extremely large, since the size is the square of the number of data points. Fortunately, it is not necessary to explicitly calculate, store, or invert the DCM. Likewise, it is not necessary to explicitly calculate, store, or use the inverse of the DCM. Instead, **it is more efficient to accomplish the same results using only the various component matrices that appear in the definition of the DCM.** Those component matrices are either diagonal or small (the number of data points times the number of data-reduction parameters); hence, this **“Implicit Data Covariance”** (IDC) **method requires far less array storage and far fewer computations while producing more accurate results.**

The purpose of this report is to encourage experimentalists to report all information necessary for the creation of the DCM without actually creating the full DCM. Data repositories can then readily store the needed information and communicate it to analysts and evaluators.
Implicit Data Covariance Matrix with AGS methodology

How to generate cross-correlations between different reduced data?

Data Covariance Matrix for fission measurements*

\[
\sigma_f(t) = N \frac{a(t)Y_U(t) - B_U(t)}{a(t)Y_B(t) - B_B(t)} \sigma_B(t)
\]

* Benoit Habert, PhD Thesis, 2009
Implicit Data Covariance Matrix with AGS methodology

$^{235}\text{U}(n,f)$ measured at the GELINA facility*, $L=10$ m, 100Hz, 800Hz

*Olivier Serot, Cyrille Wagemans
$$\sigma_f(t) = N \frac{a(t)Y_U(t) - B_U(t)}{a(t)Y_B(t) - B_B(t)} \sigma_B(t)$$

$$C_{\sigma_f} = S_{\sigma_f} S_{\sigma_f}^T + D_{\sigma_f} \quad \text{diagonal matrix}$$

$$\left(\frac{\partial \sigma_f}{\partial \alpha} \right) L_a \left(\frac{\partial \sigma_f}{\partial B_U} \right) L_{B_U} \left(\frac{\partial \sigma_f}{\partial B_B} \right) L_{B_B} \left(\frac{\partial \sigma_f}{\partial N} \right) L_N \quad \text{var} (\sigma_f)$$

$$m$$

$$n=5$$
Implicit Data Covariance Matrix with AGS methodology
Implicit Data Covariance Matrix with AGS methodology

Normalization

| $\frac{\partial \sigma_1}{\partial a_1}$ | $\frac{\partial \sigma_1}{\partial B_{U_1}}$ | $\frac{\partial \sigma_1}{\partial B_{B_1}}$ | 0 | 0 | 0 | $\frac{\partial \sigma_1}{\partial N}$ | var(σ_1) | 100 Hz |
| \vdots |
| $\frac{\partial \sigma_m}{\partial a_1}$ | $\frac{\partial \sigma_m}{\partial B_{U_1}}$ | $\frac{\partial \sigma_m}{\partial B_{B_1}}$ | 0 | 0 | 0 | $\frac{\partial \sigma_m}{\partial N}$ | var(σ_m) |
| \vdots |
| 0 | 0 | 0 | $\frac{\partial \sigma_{m+1}}{\partial a_2}$ | $\frac{\partial \sigma_{m+1}}{\partial B_{U_2}}$ | $\frac{\partial \sigma_{m+1}}{\partial B_{B_2}}$ | $\frac{\partial \sigma_{m+1}}{\partial N}$ | var(σ_{m+1}) | 800 Hz |
| \vdots |
| 0 | 0 | 0 | $\frac{\partial \sigma_k}{\partial a_2}$ | $\frac{\partial \sigma_k}{\partial B_{U_2}}$ | $\frac{\partial \sigma_k}{\partial B_{B_2}}$ | $\frac{\partial \sigma_k}{\partial N}$ | var(σ_k) |

$n=8$
Implicit Data Covariance Matrix with AGS methodology
What can happen when off-diagonal data covariance matrix elements are used to fit reduced data?

Linear least-squares \(\Rightarrow \) the « best » estimate of the parameters are found iteratively by solving the following equations

\[
M_{x_1}^{-1} = M_{x_0}^{-1} + G_x^T C^{-1} G_x
\]

\[
X_1 = X_0 + M_{x_1}^{-1} G_x C^{-1} (Y_{\text{exp}} - Y_{th}(x_0))
\]

With

\[
C = SS^T + D
\]
The normalisation of the transmission data is provided by four boron trifluoride (BF$_3$) detectors placed in the concrete wall above the uranium target.
Raw transmission data (thick PbI$_2$ sample) measured at the GELINA facility
$L=50\text{m}, 800 \text{ Hz}, \text{FP4}$

\[N_T=1.163 \pm 0.0 \]
Raw transmission data (thick PbI$_2$ sample) measured at the GELINA facility, L=50m, 800 Hz, FP4

\[N_T = 1.163 \pm 0.006 \quad (0.5\%) \]

\[\sigma_p = 4\pi R'^2 \Rightarrow \text{potential scattering radius } R' \]
Transmission, PbI$_2$ sample: Least-squares fit of R’ with SAMMY and CONRAD. The Implicit Data Covariance matrix $C=SS^T+D$ takes into account the uncertainty on the normalization:

$$N_T=1.163 \pm 0.006 (0.5\%)$$

<table>
<thead>
<tr>
<th>Method</th>
<th>R’</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMMY+IDC</td>
<td>6.690±0.001 fm</td>
</tr>
<tr>
<td>CONRAC+IDC</td>
<td>6.697±0.001 fm</td>
</tr>
<tr>
<td>CONRAD+Marginalization</td>
<td>6.68 ± 0.16 fm</td>
</tr>
<tr>
<td>Direct perturbation</td>
<td>$\Delta R' \approx 0.14$ fm</td>
</tr>
</tbody>
</table>

The « unexpected » consequences of IDC can be solved by using the marginalization procedure of CONRAD and the **PUP** methodology of SAMMY*

* Benoit Habert et al, NSE 166, 276 (2010)
Generalization of the IDC methodology

IDC : a solution to store large Resonance-Parameter Covariance Matrix ?

$M_x \Rightarrow$ Resonance-Parameter Covariance Matrix (RPCM) provided by the fitting model

$M_\theta \Rightarrow$ Covariance matrix between the auxiliary parameters (nuissance or latent parameters)

The covariance matrix can be partitioned as follow :

$$
\Sigma = \begin{pmatrix}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{pmatrix}
\begin{align*}
\Sigma_{11} &= M_x + M_\theta \\
\Sigma_{22} &= M_\theta \\
\Sigma_{12} &= M_{x,\theta}
\end{align*}
$$

However, at the end of the fitting procedure, the covariance matrix between the parameters is given by:

$$
M = \begin{pmatrix}
M_x & 0 \\
0 & M_\theta
\end{pmatrix}
$$

Under this fitting model, the cross-covariance matrix $M_{x,\theta}$ between x and θ contained only zeros
Generalization of the IDC methodology

« Zero variance penalty » condition

Non-zero elements can be calculated through the use of a particular case that consists in determining M^θ_x and $M_{x,\theta}$ such that:

$$\text{var}(y) = G_x M_x G_x^T$$

$$\text{var}(y) = G\Sigma G^T$$

For a vector quantity y of general dimension k, the derivative matrix G of the quantity y to the parameters x and θ is defined as:

$$G=(G_x,G_\theta)$$

Where

$$G_x = \begin{pmatrix}
\frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial y_k}{\partial x_1} & \cdots & \frac{\partial y_k}{\partial x_n}
\end{pmatrix}$$

$$G_\theta = \begin{pmatrix}
\frac{\partial y_1}{\partial \theta_1} & \cdots & \frac{\partial y_1}{\partial \theta_m} \\
\vdots & \ddots & \vdots \\
\frac{\partial y_k}{\partial \theta_1} & \cdots & \frac{\partial y_k}{\partial \theta_m}
\end{pmatrix}$$
By using the partitioned form of G, we have

$$
\text{var}(y) = G_x M_x G_x^T
$$

$$
\text{var}(y) = G \Sigma G^T = G_x M_x G_x^T + G_x M_x \theta G^T_x + G_x M_{x,\theta} G^T_\theta + \left(G_x M_{x,\theta} G^T_\theta\right)^T + G_\theta M_\theta G^T_\theta
$$

This condition lead to the following results

$$
G_x M_{x,\theta} G^T_\theta + \left(G_x M_{x,\theta} G^T_\theta\right)^T = -G_x M^\theta G^T_x - G_\theta M_\theta G^T_\theta
$$

By definition, $G_\theta M_\theta G^T_\theta$ is a symmetric positive-definite matrix whose the number of rows and columns is equal to the size of y:

$$
G_\theta M_\theta G^T_\theta = \left(G_\theta M_\theta G^T_\theta\right)^T
$$

Therefore:

$$
G_x M_{x,\theta} G^T_\theta + \left(G_x M_{x,\theta} G^T_\theta\right)^T = -G_x M^\theta G^T_x - \left(G_\theta M_\theta G^T_\theta\right)^T
$$
Generalization of the IDC methodology

\[
G_x M_{x,\theta} G^T_{\theta} + \left(G_x M_{x,\theta} G^T_{\theta} \right)^T = -G_x M^\theta_x G^T_x - \left(G^T_{\theta} M_\theta G^T_{\theta} \right)^T
\]

This equality is satisfied if we choose \(M^\theta_x \) and \(M_{x,\theta} \) such that:

\[
G_x M_{x,\theta} G^T_{\theta} = -G^T_{\theta} M_\theta G^T_{\theta} \quad \text{(a)}
\]

\[
G_x M^\theta_x G^T_x = G^T_{\theta} M_\theta G^T_{\theta} \quad \text{(b)}
\]

By multiplying the left and right hand sides of (a) by \(G^T_x \) and \(G^T_{\theta} \), one obtains:

\[
M_{x,\theta} = -(G^T_x G_x)^{-1} G^T_x G^T_{\theta} M_\theta
\]

The covariance matrix \(M^\theta_x \) can be directly deduced by multiplying the left and right hand sides of equation (b) by \(G^T_x \) and \(G_x \):

\[
M^\theta_x = \left(G^T_x G_x \right)^{-1} G^T_x G^T_{\theta} M_\theta G^T_{\theta} G_x \left(G^T_x G_x \right)^{-1}
\]
Generalization of the IDC methodology

Link with AGS formalism

\[
\Sigma = \begin{pmatrix}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{pmatrix}
\]

\[
\begin{align*}
\Sigma_{11} &= M_x + \left(G_x^T G_x\right)^{-1} G_x^T G_\theta M_\theta G_\theta^T G_x \left(G_x^T G_x\right)^{-1} \\
\Sigma_{12} &= -\left(G_x^T G_x\right)^{-1} G_x^T G_\theta M_\theta \\
\Sigma_{22} &= M_\theta
\end{align*}
\]

Cholesky decomposition of the positive-definite matrix \(M_x \theta \) into the product of a lower triangular matrix and its conjugate transpose lead to:

\[
\Sigma_{11} = M_x + SS^T
\]

If the contribution of the « statistical » uncertainties (from the fit) are negligible compared to the « systematic » uncertainties

\[
M_x \approx \text{diag}(\text{var}(x_1) \ldots \text{var}(x_n))
\]
Generalization of the IDC methodology

Link with AGS formalism:

Simple example with the normalization $N \pm \Delta N$ and the background $B \pm \Delta N$

$$\Sigma_{11} = M_x + SS^T$$

The matrix M_x contains the variance of the resonance parameters given by the fit

$$M_x \approx \text{diag}(\text{var}(E_1), \text{var}(\Gamma_{\gamma_1}), \text{var}(\Gamma_{n_1}) \ldots \text{var}(E_n), \text{var}(\Gamma_{\gamma_n}), \text{var}(\Gamma_{n_n}))$$

If N and B are independent, the matrix S can be written as follows:

$$S^T = \begin{pmatrix} \frac{\partial E_1}{\partial N} \Delta N, \frac{\partial \Gamma_{\gamma_1}}{\partial N} \Delta N, \frac{\partial \Gamma_{n_1}}{\partial N} \Delta N \cdots \frac{\partial E_n}{\partial N} \Delta N, \frac{\partial \Gamma_{\gamma_n}}{\partial N} \Delta N, \frac{\partial \Gamma_{n_n}}{\partial N} \Delta N \\ \frac{\partial E_1}{\partial B} \Delta B, \frac{\partial \Gamma_{\gamma_1}}{\partial B} \Delta B, \frac{\partial \Gamma_{n_1}}{\partial B} \Delta B \cdots \frac{\partial E_n}{\partial B} \Delta B, \frac{\partial \Gamma_{\gamma_n}}{\partial B} \Delta B, \frac{\partial \Gamma_{n_n}}{\partial B} \Delta B \end{pmatrix}$$

NB: the positive definiteness requirement will be satisfy if the Resonance-Parameter Covariance Matrices are stored in EXFOR and ENDF-6 format with the IDC methodology.
Time resolution of the facility

How to store Resolution Function in EXFOR?

\[\Delta T < 5 \, \text{K} \]
\[\Delta \theta_D \approx 10\% \]

\[\langle \Gamma_\gamma \rangle = 43.8 \pm 1.5 \, \text{meV} \]
Time resolution of the facility

Analytic description of the experimental resolution

Contribution of the neutron source (uranium target, …)

\[I_t(t) \approx \frac{\ln(2)}{\tau(E)} \left(k_1 + k_2 E^{k_3} \right) e^{-\frac{\ln(2)}{\tau(E)} t} \quad \tau(E) = \lambda_c \frac{72.298}{\sqrt{E}} \]

Contribution of the water moderator

\[I_m(t) = \frac{1}{2} \left(\frac{\sqrt{E}}{72.298 \Lambda} \right)^3 t^2 e^{-\frac{\sqrt{E}}{72.298 \Lambda} t} \quad \Lambda(E) = \frac{\lambda_0}{\lambda(1eV)} \lambda(E) \]

Contribution of the flight path angle

\[I_\theta(t) \propto \sqrt{T_m^2 + (T_m - 2t)^2} \quad T_m = \frac{72.298 D_c \tan(\theta)}{\sqrt{E}} \]

⇒ nuissance parameters of interest are \(k_1, k_2, k_3, \lambda_c, \lambda_0 \) and \(D_c \)
Time resolution of the facility

Analytic description of the experimental resolution

Order of magnitude of the parameters:

\[\lambda_0 = 7 \pm 2 \text{ mm} \]

\[\lambda_\tau = 24 \pm 5 \text{ mm} \]

\[D_c = 10 \pm 2 \text{ cm} \]