Current Status of CIAE Activities on Nuclear Data Adjustment

WU Haicheng

China Nuclear Data Center(CNDC)
China Institute of Atomic Energy(CIAE)
P.O.Box 275-41, Beijing 102413, P.R.China
Outline

- Introduction
- Methods and Procedures
- Nuclear Data Preparation
- Preliminary Benchmark Results
- Summary
Introduction

- History
 - No *Nuclear Data Adjustment* on multi-group cross-section (XS) library had been done before.
 - Fe, $^{235,238}\text{U}$, ^{239}Pu and et al. of CENDL-2.1 were adjusted according several benchmark results.
 - The total cross sections of $^{63,65}\text{Cu}$ for CENDL-3.1 were evaluated based on trend and sensitivity analysis of selected benchmarks.
Introduction

- Our plan
 - Generate a set of multigroup XS library.
 - Generate a set of covariance matrices.
 - Do benchmark exercise.
 - Develop a S/U analysis code – 1/D
 - Perform S/U analysis.
 - Develop a nuclear data adjustment code for multigroup library?
 - Do adjustment exercise.
 - Others?
Methods and Procedures

- **Maximum Likelihood Method** is going to be used in our practice.
 - The vector of adjusted constant is given by

 \[C' = C + M H^T \left(V + H M H^T \right)^{-1} \left(I_e - I_p \right) \]
 - The best estimated results for integral quantities are given by

 \[I' = I_c + H M H^T \left(V + H M H^T \right)^{-1} \left(I_e - I_c \right) \]
Methods and Procedures

- Some criteria in applying the nuclear data adjustment
 - The benchmarks sequence used for adjustment should be clean and able to define a trend of a integral parameter (k_{eff}, reaction rate, and so on.) for one material (an isotope or an element) explicitly.
 - The chosen of the material to be adjusted should be based on trend and sensitivity analysis.
 - Reserve human judgments to avoid unreasonable adjustment occurred.
Methods and Procedures

- **NPLC-2**
 - Resonance self-shielded XS library in AMPX/ANISN format

- **XSDRN-PM**
 - 1D transport calculations

- **DOT-3.5**
 - 2D transport calculations

- **SENS-1D**
 - S_N based XS sensitivity and uncertainty
 - First-order perturbation theory
Nuclear Data Preparation

- Multigroup Cross Section Library
 - Code: NPLC-2, preNPLC2.pl+NJOY99+PASC4
 - Evaluation files (78 in total):
 - CENDL-3.1 (with covariances): ^{56}Fe
 - JENDL-4.0 (with covariances): ^{10}B, ^{23}Na, $^{235,238}\text{U}$, $^{239,240}\text{Pu}$.
 - CENDL-3.1: others.
 - GRP. Structure: 33g
 - Weight function: iwt=8, thermal+ 1/e + fast reactor + fission + fusion
 - Self-Shielding: Bonami-II
 - Effective XS: XSDRN-PM
Nuclear Data Preparation

- Covariance Matrix
 - Different weight function -- different multigroup covariance
 - The same weight function was used both in our multigroup XS and covariance matrix preparing.

![Graph showing energy ratio and differential energy ratio for two different weight functions: iwt8 (Thermal + 1/E + fast reactor + fission + fusion) and iwt3 (1/E). The graph illustrates the behavior of the ratio across different energy ranges.]
Nuclear Data Preparation

- $^{239}\text{Pu}(n,f)$ -- Different weight func. and group structure?
Nuclear Data Preparation

$$^{235}\text{U}(n,f)$$

- Correlation Matrix
- Ordinate scales are % relative standard deviation and barns.
- Abscissa scales are energy (eV).

CNDC

IJS
Nuclear Data Preparation

- $^{238}\text{U}(n,\gamma)$

- $\Delta\sigma/\sigma$ vs. E for $^{238}\text{U}(n,\gamma)$
 - Ordinate scales are % relative standard deviation and barns.
 - Abscissa scales are energy (eV).

- Correlation Matrix
 - CNDC
 - IJS

2011-05-11
WPEC Meeting/SG33, NEADB, France
Preliminary Benchmark Results

- **Jezebel – 239Pu**

<table>
<thead>
<tr>
<th>Parameters</th>
<th>MC Benchmark Model</th>
<th>S_4P_1</th>
<th>Corr. Fact.</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{eff}</td>
<td>0.9984</td>
<td>1.0040</td>
<td>0.9945</td>
<td>1.00000 ± 200pcm</td>
</tr>
<tr>
<td>F28/F25</td>
<td>0.2069</td>
<td>0.2056</td>
<td>1.0066</td>
<td>0.2133 ± 1.1%</td>
</tr>
<tr>
<td>F37/F25</td>
<td>0.9811</td>
<td>0.9809</td>
<td>1.0002</td>
<td>0.9835 ± 1.4%</td>
</tr>
<tr>
<td>F49/F25</td>
<td>1.4374</td>
<td>1.4364</td>
<td>1.0007</td>
<td>1.4609 ± 0.9%</td>
</tr>
</tbody>
</table>

- **Jezebel – 240Pu**

<table>
<thead>
<tr>
<th>Parameters</th>
<th>MC Benchmark Model</th>
<th>S_4P_1</th>
<th>Corr. Fact.</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{eff}</td>
<td>0.9985</td>
<td>1.0037</td>
<td>0.9948</td>
<td>1.00000 ± 200pcm</td>
</tr>
<tr>
<td>F28/F25</td>
<td>0.1759</td>
<td>0.1685</td>
<td>1.0438</td>
<td>0.1799 ± 1.1%</td>
</tr>
<tr>
<td>F37/F25</td>
<td>0.8645</td>
<td>0.8447</td>
<td>1.0234</td>
<td>0.8561 ± 1.4%</td>
</tr>
</tbody>
</table>

- **Flattop-Pu**

<table>
<thead>
<tr>
<th>Parameters</th>
<th>MC Benchmark Model</th>
<th>S_4P_1</th>
<th>Corr. Fact.</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{eff}</td>
<td>0.9988</td>
<td>0.9939</td>
<td>1.0050</td>
<td>1.00000 ± 300pcm</td>
</tr>
<tr>
<td>F28/F25</td>
<td>0.1759</td>
<td>0.1685</td>
<td>1.0438</td>
<td>0.1799 ± 1.1%</td>
</tr>
<tr>
<td>F37/F25</td>
<td>0.8645</td>
<td>0.8447</td>
<td>1.0234</td>
<td>0.8561 ± 1.4%</td>
</tr>
</tbody>
</table>
Preliminary Benchmark Results

- **ZPR6-7 standard**
 - The result of deterministic code is unreasonable 😞
 - Insufficient resonance self-shielding for 238U?

<table>
<thead>
<tr>
<th>Parameters</th>
<th>MC Benchmark Model</th>
<th>S_4P_1</th>
<th>Corr. Fact.</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{eff}</td>
<td>0.9902</td>
<td>0.9467</td>
<td>1.0460</td>
<td>0.9866 ± 230pcm</td>
</tr>
<tr>
<td>F49/F25</td>
<td>0.9159</td>
<td>0.9633</td>
<td>0.9510</td>
<td>0.9435 ± 2.1%</td>
</tr>
<tr>
<td>F28/F25</td>
<td>0.0205</td>
<td>0.0249</td>
<td>0.8250</td>
<td>0.0223 ± 3.0%</td>
</tr>
<tr>
<td>C28/F25</td>
<td>0.1393</td>
<td>0.1693</td>
<td>0.8230</td>
<td>0.1323 ± 2.4%</td>
</tr>
</tbody>
</table>

- **To be done**
 - ZPR6-7 High Pu-240
 - ZPRR-9
 - Joyo MK-1
Summary

- A 33g AMPX library has been generated for nuclear data adjustment.
- Covariance matrices are also generated with .
 - Additional uncertainties can be imported during processing.
- Benchmark exercises have not been finished yet。
- Develop a S/U analysis code – 1D
 - Dr. Wang will give a talk later.
- Work has not be done
 - Perform S/U analysis with SENS-1D.
 - Develop an adjustment code.
 - Do adjustment exercise.
Thank you for your attention.