2nd Meeting of WPEC Subgroup 33 on Methods and issues for the combined use of integral experiments and covariance data

November 24, 2009
NEA Headquarter, Issy-les-Moulineaux, France

Adjustment Study in JAEA

Makoto ISHIKAWA and Kazuteru SUGINO

Japan Atomic Energy Agency (JAEA)
(Contents)

1. Objective, history, features of adjustment study in JAEA
2. Theory of cross-section adjustment
3. Sensitivity coefficients
4. Covariance of nuclear data
5. Integral experiment data
6. Adjustment results
7. Application to FBR core design
8. Conclusions
Objective and History of Adjustment
Study for FBR

1. Objective
To improve the prediction accuracy of FBR core nuclear design, the adjusted cross-section set, which combined integral experimental information with differential nuclear data, is being developed in Japan.

2. History
1) 1989 – 1991: A cooperative study between JAEA and JAPC was performed to create the ADJ91 set based on JENDL-2 --> Applied to the design study of the Demonstration FBR.
2) 1992 – 1995: JAEA, Hitachi and Osaka Univ. developed the sensitivity method and analytical system for the burnup characteristics and Doppler reactivity.
 --> Being used in the future FBR project (FS and FaCT).
Main Features of Adjusted Cross-section Sets

<table>
<thead>
<tr>
<th></th>
<th>ADJ91</th>
<th>ADJ2000</th>
<th>ADJ2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear parameters to be adjusted</td>
<td>σ_{∞} of 11 nuclides (32 reactions), χ of 2 nuclides, β of 6 nuclides</td>
<td>σ_{∞} of 11 nuclides (41 reactions), χ of 2 nuclides, β of 6 nuclides, self-shielding factors of U-238</td>
<td>In addition, MA nuclides</td>
</tr>
<tr>
<td>Nuclear data covariance</td>
<td>Rough estimation from difference between measured values and JENDL-2</td>
<td>Covariance data file of JENDL-3.2, evaluated by the Japan Sigma Committee</td>
<td>Covariance data file of JENDL-4</td>
</tr>
<tr>
<td>Integral experimental data</td>
<td>82 data from JUPITER experiment</td>
<td>237 data from JUPITER, FCA, JOYO, BFS, MASURCA and Los Alamos, including burnup and Doppler data.</td>
<td>In addition, MA irradiation data, ZEBRA, SEFOR, Monju</td>
</tr>
</tbody>
</table>
Theory of Cross-section Adjustment

- Based on the Bayes theorem, i.e., the conditional probability estimation method

 $J(T) = (T-T_0)^t M^{-1}(T-T_0) + [Re-Rc(T)]^t[Ve+Vm]^{-1}[Re-Rc(T)]$

 Minimize the function $J(T)$. → $dJ(T)/dT = 0$

- The adjusted cross-section set T', and its uncertainty (covariance), M'

 $T' = T_0 + MG'[GMG'+Ve+Vm]^{-1}[Re-Rc(T_0)]$
 $M' = M - MG'[GMG'+Ve+Vm]^{-1}GM$

- Prediction error induced by the cross-section errors

Before adjustment: GMG'

After adjustment: $GM'G'$

Where, T_0: Cross-section set before adjustment
M: Covariance before adjustment
Ve: Experimental errors of integral experiments
Vm: Analytical modeling errors of integral experiments
Re: Measured values of integral experiments
Rc: Analytical values of integral experiments

G: Sensitivity coefficients, $(dR/R)/(dσ/σ)$

If $GMG'\ll Ve+Vm$, $T'\approx T_0$ and $GM'G'\approx GMG'$
If $GMG'\gg Ve+Vm$, $GM'G'\approx Ve+Vm$
If $GMG'\approx Ve+Vm$, $GM'G'\approx 1/2 \times GMG'$
Sensitivity Coefficient of Doppler Reactivity

- Conventional sensitivity method treats only infinitely-diluted cross-sections. → Impossible to evaluate Doppler reactivity.

- Doppler reactivity: \[R = \frac{1}{k_{\text{eff,low}}} - \frac{1}{k_{\text{eff,high}}} \]

- Relationship of effective cross-sections with temperature:
 \[\sigma_{\text{eff,high}} \approx \left(f_{\text{low}} + \left(\frac{df}{dT} \right) \Delta T \right) \sigma_{\text{eff,low}} = (1 + f' \Delta T) \sigma_{\text{eff,low}} \]
 where,
 \[f' = \frac{1}{f_{\text{low}}} \left(\frac{df}{dT} \right) = \alpha \]

- Introduction of pseudo-cross-sections, \(df/dT (=f') \):
 \[S_{f'} = \frac{dR / R}{df'/f'} = \left(\frac{\sigma_{\text{eff,high}} - \sigma_{\text{eff,low}}}{\sigma_{\text{eff,high}}} \right) \times \frac{1}{R} \times \frac{S_{k_{\text{eff,high}}}}{k_{\text{eff,high}}} \]
 where,
 \[S_{k_{\text{eff,high}}} = \frac{dk_{\text{eff,high}} / k_{\text{eff,high}}}{d\sigma_{\text{x,high}} / \sigma_{\text{x,high}}} \]
 (Merits) 1) Easily calculated from the sensitivity of criticality, \(S_{k_{\text{eff}}} \)
 2) No influence to the self-shielding factors at room temperature.
Sensitivity for Sample Doppler Reactivity (ZPPR-9 Core)

- The df/dT of U-238 capture has largely positive sensitivity at keV energy region.

- Sensitivity of Pu-239 fission is negative, since it increases the denominator of perturbation.

- There is also a certain sensitivity to space-related reactions, since it also has the characteristics of local sample reactivity.
Generalized Perturbation Theory for Burnup characteristics

- Needs: 1) Use of power reactor data such as burnup reactivity loss or composition changes of fuel nuclides
- 2) Evaluation of FBR nuclear design accuracy

- Net sensitivity: \(S(\sigma^g_x) = \frac{dR / R}{d\sigma^g_x / \sigma^g_x} = \sigma^g_x \times \left\{ S_D + S_N + S_\phi + S_\phi^* + S_P \right\} \)

\[
S_D = \sum_{i=1}^{l_i} \left[\int_{t_i}^{t_{i+1}} dt \frac{\partial R}{\partial \sigma^g_x} \right]_{E,V} \quad \text{: Direct term}
\]
\[
S_N = \sum_{i=1}^{l_i} \left[\int_{t_i}^{t_{i+1}} dt \left(N^* \frac{\partial M}{\partial \sigma^g_x} N \right) \right]_{E,V} \quad \text{: Atomic number density term} \quad \frac{\partial}{\partial t} N(t) = M \times N(t) \quad \text{: Burnup equation}
\]
\[
S_\phi = \sum_{i=1}^{l_i} \left[\Gamma_i^* \frac{\partial B}{\partial \sigma^g_x} \phi_i \right]_{E,V} \quad \text{: Normal flux term} \quad P_i = \int_{E,V} dEdV [\kappa \sigma_f N \phi] \quad \text{: Reactor power}
\]
\[
S_\phi^* = \sum_{i=1}^{l_i} \left[\Gamma_i \frac{\partial B}{\partial \sigma^g_x} \phi_i^* \right]_{E,V} \quad \text{: Adjoint flux term} \quad P^* : \text{Adjoint power}
\]
\[
S_P = \sum_{i=1}^{l_i} \left[P_i^* \frac{\partial P}{\partial \sigma^g_x} \right]_{E,V} \quad \text{: Power normalization term} \quad N_i^* : \text{Adjoint atomic number density}
\]
Sensitivity for Burnup Reactivity Loss
(JOYO Mk-I Core)

- **Direct term** is negative because it increases Denominator.
- **Atomic number density term** is positive since it accelerates the decrease of Pu-239.
- **Power normalization term** is negative because it lowers the neutron flux level.

Net sensitivity of Pu-239 fission is slightly negative because of these cancellation.
Group-structure Covariances

(Comparison of Pu-239 Fission Cross-section)

Integral Data for Fast Reactors (1/4)

JUPITER Critical Experiment
- Cooperative study of DOE and JNC in 1978～1988, using ZPPR facility at ANL, USA.
- The largest FBR mockup experiment in history, 4,600 – 8,500 liters.
- Various core concepts, sizes, and structures:
 - 600～800MWe-class two-region homogeneous cores,
 - 650MWe-class radially-heterogeneous cores,
 - 650MWe-class axially-heterogeneous cores,
 - and, 1000MWe-class homogeneous cores with enriched uranium regions.
- Many kinds of measured parameters.

As-built experimental information is available for the public.

ZPPR Critical Assembly (ANL)
Integral Data for Fast Reactors (2/4)

- **FCA Critical Experiment**
 - Fast Critical Assembly at JAEA, Japan.
 - To simulate small FBR cores with plutonium and enriched uranium fuels.
 - FCA X-1 Core (1982) - 130 liters.

- **Experimental Reactor JOYO**
 - First Japanese FBR (1st Criticality in 1977)
 - Burnup, pin-wrapper structure.
 - Mixed one-region plutonium and enriched uranium core with 240 liter-size.
 - Criticality, fuel-blanket replacement reactivity, and burnup reactivity were adopted.
 - JOYO Mk-I Core (JAEA) (Minimum critical core)

As-built experimental information is available for the public.
Integral Data for Fast Reactors (3/4)

BFS-1, 2 Critical Experiment
- Fast Critical Assembly at IPPE, Obninsk, Russia.

MASURCA Critical Experiment
- Fast Critical Assembly at CEA, Cadarache, France.
 - ZONA2B Core (1996) — a 380 liter-size MOX fuel core with reflectors, which simulated Pu-burner.
Integral Data for Fast Reactors (4/4)

- **Los Alamos Small Core Experiment**
 - Sphere-shaped cores of approx. ten centimeter in diameter with metallic fuel consisted of Pu-239, or degraded Pu, or U-235.
 - FLATTOP-Pu, FLATTOP-25, JEZEBEL, JEZEBEL-Pu, GODIVA (1950s – early 60s)

Benchmark models have already opened.

- **Other Experiments**
 - **ZEBRA** (MOZART program, 1971-73, UK) - a 560 liter-sized single-region and a 1,800 liter-sized two-region MOX cores.
 - **SEFOR** (General Electric, 1969-72, USA) - a 20MWt fast power reactor core fueled with mixed PuO₂-UO₂ and cooled with sodium.
 - **Monju** (JAEA, 1st Criticality in 1994, Japan) - a 280MWe FBR with MOX fuel.

Los Alamos Small Core (JEZEBEL)
Determination of Experimental and Analytical Uncertainties

- **Experimental uncertainty**
 - Follows the evaluation by experimenters like ANL.

- **Analytical modeling uncertainty**
 - Assumes it is proportional to the sensitivity against the degree of modeling detail,
 - Absolute value was decided to make the ratio of the chi-square value to the freedom approx. unity.

- **Elimination of abnormal data**
 - Excludes if the deviation of C/E value from unity is three times larger than the total uncertainty value.

<table>
<thead>
<tr>
<th>Core Parameter</th>
<th>Experimental uncertainty</th>
<th>Analytical Modeling uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUPITER, FCA, etc.</td>
<td>0.04%</td>
<td>0.17%</td>
</tr>
<tr>
<td>Los Alamos</td>
<td>0.1~0.18%</td>
<td>0.15%</td>
</tr>
<tr>
<td>F28/F49 Ratio</td>
<td>2.5%</td>
<td>1.1%</td>
</tr>
<tr>
<td>F25/F49, C28/F49 Ratio</td>
<td>2.2%</td>
<td>0.55%</td>
</tr>
<tr>
<td>F49 Distribution</td>
<td>1.0%</td>
<td>0.6~1.2%</td>
</tr>
<tr>
<td>Control Rod Worth</td>
<td>1.2%</td>
<td>1.3%</td>
</tr>
<tr>
<td>Sodium Void Reactivity</td>
<td>2%</td>
<td>5.5~8.8%</td>
</tr>
<tr>
<td>Doppler Reactivity</td>
<td>2.0~3.0%</td>
<td>5.0~6.6%</td>
</tr>
</tbody>
</table>
Change of Nuclear Data
- Pu-239 Fission -

- In the simultaneous evaluation region, the error values are small.
- On the other hand, the errors are large in the resonance region.
- Change of the fission cross-section by adjustment follows such energy dependency.
The C/E values of criticality after adjusted are within ±0.3% Δk, except several small cores.

The good performance is not only for Pu-fuel cores, but enriched-U fuel cores.
The C/E values of reaction rate distribution after adjusted are sufficiently smaller than ±1.5% in the core fuel region.

There is room for improvement for the blanket region.
It seems Re-investigation is needed for the accuracy of sample Doppler reactivity measurements.
The effect of adjustment is small for JUPITER and FCA experiment, and the C/E values are within app. ±10%.

The discrepancy of C/E values from 1.0 may be caused by something, besides nuclear data.
A 600 MWe-class FBR Core

Core structure of a 600 MWe-class FBR
Nuclear Design Accuracy of a 600 MWe-class FBR

1σ value (Non-diagonal terms show correlation factors.)

<table>
<thead>
<tr>
<th>Nuclear parameter</th>
<th>Criticality (End of equilibrium cycle)</th>
<th>Breeding ratio (C28/F49 reaction rate ratio)</th>
<th>Power distribution (Outer core region)</th>
<th>Doppler reactivity (Whole core region)</th>
<th>Na void Reactivity (Whole core region)</th>
<th>Burnup reactivity loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>0.81 (0.78)%</td>
<td>-0.54</td>
<td>0.49</td>
<td>-0.54</td>
<td>-0.02</td>
<td>0.24</td>
</tr>
<tr>
<td>(Symmetry matrix)</td>
<td></td>
<td>-1.5 (1.2) %</td>
<td>1.4 (1.1) %</td>
<td>4.0 (3.4) %</td>
<td>6.1 (3.7) %</td>
<td>5.6 (5.4) %</td>
</tr>
<tr>
<td>Contribution from nuclear data covariances.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Design Accuracy Improvement of a 600 MWe-class FBR

(*1σ value)

<table>
<thead>
<tr>
<th>Nuclear parameter</th>
<th>Design method</th>
<th>No use of integral information</th>
<th>E/C-bias method</th>
<th>Cross-section adjustment method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criticality (End of equilibrium cycle)</td>
<td></td>
<td>0.81</td>
<td>0.41</td>
<td>0.23</td>
</tr>
<tr>
<td>Breeding ratio (C28/F49 reaction rate ratio)</td>
<td></td>
<td>1.5</td>
<td>2.3</td>
<td>1.0</td>
</tr>
<tr>
<td>Power distribution (Outer core region)</td>
<td></td>
<td>1.4</td>
<td>1.6</td>
<td>1.0</td>
</tr>
<tr>
<td>Doppler reactivity (Whole core region)</td>
<td></td>
<td>4.0</td>
<td>4.9</td>
<td>2.6</td>
</tr>
<tr>
<td>Na void Reactivity (Whole core region)</td>
<td></td>
<td>6.1</td>
<td>6.5</td>
<td>4.9</td>
</tr>
<tr>
<td>Burnup reactivity loss</td>
<td></td>
<td>5.6</td>
<td>7.5</td>
<td>3.6</td>
</tr>
</tbody>
</table>
Concluding Remarks

- JAEA has performed the nuclear data adjustment study for 20 years, continuously. As a result, a unified cross-section set, **ADJ2000**, was developed, the features of which are, JENDL-3.2 base, adjustment of self-shielding factors, application of the latest cross-section covariance, experiments of wide-variety cores, adoption of burnup characteristics and Doppler reactivity.

- ADJ2000 can predict **wide-variety cores** with high accuracy, from large to small size cores, and from critical experiments to power reactor, for **various core parameters**, being used in the future FBR development project.

The next adjusted set, **ADJ2010**, is quite soon expected with JENDL-4 and associated **covariance data**.