

Effect of Fission Yield Libraries on Irradiated Fuel Composition in Monte Carlo Depletion Calculations E.F. Mitenkova and N.V. Novikov

Nuclear Safety Institute of Russian Academy of Sciences B.Tulskaya 52, Moscow, 115119, Russia mit@ibrae.ac.ru

Energy grid ^kE in fission yield sources

Source	^k E, MeV	FP nuclides	Comment
ENDF/B-VII	$2.53 \ 10^{-8}, \ 0.5, \ 14.0$	1321	Ti (z=22)
JEFF-3.1	2.53 10 ⁻⁸ , 0.4, 14.0	1355	no data for ²³⁹ Pu, ²⁴¹ Pu at ^k E =14 MeV Ca (z=20), Light elements
GEFY 3.3	2.53 10 ⁻⁸ , 0.4, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20	907	Mn (z=25)
Koldobsky	2.53 10 ⁻⁸ , 0.5, 1.0, 2.5, 5.0, 7.5, 10.0, 14.0	820	no data for ²³⁵ U, Cr (z=24)
JENDL-4	$2.53 \ 10^{-8}, \ 1.0, \ 14.0$	1241	V (z=23), Light elements
TENDL- 2010	2.53 10 ⁻⁸ , 1.0 10 ⁻⁶ , 1.0 10 ⁻⁴ , 0.5, 1.0, 14.0	1772	Ar (z=18)

Energy grid ^kE in fission yield sources

Source ^k E, MeV		FP nuclides	Comment	
ENDF/B-VII	$2.53 \ 10^{-8}, \ 0.5, \ 14.0$	1321	Ti (z=22)	
JEFF-3.1	2.53 10 ⁻⁸ , 0.4, 14.0	1355	no data for ²³⁹ Pu, ²⁴¹ Pu at ${}^{k}E = 14$ MeV Ca (z=20), Light elements	
GEFY 3.3	2.53 10 ⁻⁸ , 0.4, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20	907	Mn (z=25)	
Koldobsky	2.53 10 ⁻⁸ , 0.5, 1.0, 2.5, 5.0, 7.5, 10.0, 14.0	820	no data for ²³⁵ U, Cr (z=24)	
JENDL-4	$2.53 \ 10^{-8}, \ 1.0, \ 14.0$	1241	V (z=23), Light elements	
TENDL-2010	2.53 10 ⁻⁸ , 1.0 10 ⁻⁶ , 1.0 10 ⁻⁴ , 0.5, 1.0, 14.0	1772	Ar (z=18)	

Comparative analysis of fission product yield for ²³⁹Pu

Comparative analysis of fission product yield for ²³⁸U

NEMEA-7/CIELO. A workshop of the Collaborative International Evaluated Library Organization 5-8 November 2013, Geel, Belgium

Independent fission yield of isotopes Kr, Xe, Cs in ²³⁹Pu

NEMEA-7/CIELO. A workshop of the Collaborative International Evaluated Library Organization⁵ 5-8 November 2013, Geel, Belgium

Independent fission yield of isotopes Xe, Ru, Cs in ²³⁸U

NEMEA-7/CIELO. A workshop of the Collaborative International Evaluated Library Organization⁷ 5-8 November 2013, Geel, Belgium

Independent fission yield of isotopes Kr, Cs in ^{235}U

NEMEA-7/CIELO. A workshop of the Collaborative International Evaluated Library Organization⁸ 5-8 November 2013, Geel, Belgium

One-group constants in depletion calculations

NEMEA-7/CIELO. A workshop of the Collaborative International Evaluated Library Organization⁹ 5-8 November 2013, Geel, Belgium

Burnup = 5.0% h.a.			
Nuclide	FY_GEF/	FY_JEFF/	FY_KLD/
	FY_B-VII	FY_B-VII	FY_B-VII
${}^{1}\mathrm{H}$	0.97	0.88	0.90
⁴ He	1.00	1.23	1.00
Kr	0.76	0.99	0.90
Xe	1.04	1.01	0.87
Burnup = 10.3% h.a.			
$^{1}\mathrm{H}$	1.02	0.99	1.04
⁴ He	1.01	1.22	1.00
Burnup = 20.8% h.a.			
$^{1}\mathrm{H}$	1.0	1.16	0.99
⁴ He	1.0	1.21	1.0

Ratios of fission gases accumulation in MOX fuel

Stable and long-life nuclide accumulation in MOX fuel

Nuclide (Z)	Half-life, year	FY_GEF/ FY_B-VII	FY_JEFF/ FY_B-VII	FY_KLD/ FY_B-VII
¹¹² Cd (48)	stable	0.53	0.42	0.72
¹²⁸ Te (52)	~10 ²⁴	1.07	0.88	1.45
¹³⁰ Te	~10 ²⁴	0.94	1.06	1.09
127 I (53)	stable	0.85	0.74	1.35
¹³⁷ Cs (55)	~30	1.09	1.03	1.01
¹³⁹ La (57)	stable	0.92	1.05	1.12
¹⁵⁴ Eu (63)	~10	0.82	0.96	0.82
¹⁵⁵ Eu	~5	0.73	0.90	0.69
¹⁶¹ Dy (66)	stable	1.56	0.77	0.72
⁸¹ Br (35)	stable	0.41	0.89	0.61
¹¹³ Cd (48)	~10 ¹⁶	0.34	0.48	0.52
¹¹⁴ Cd	~10 ¹⁸	0.27	0.37	0.39
¹¹⁶ Cd	~10 ¹⁹	0.22	0.43	0.27
¹²¹ Sb (51)	stable	0.16	0.44	0.26
¹²³ Sb	stable	0.18	0.32	0.40
¹²⁵ Sb	~3	0.41	0.43	0.80

Short-life nuclide accumulation in MOX fuel

Nuclide (Z)	Half-life, min	FY_GEF/ FY_B-VII	FY_JEFF/ FY_B-VII	FY_KLD/ FY_B-VII
⁸¹ Se (34)	~20	0.42	0.88	0.61
⁸⁰ Br (35)	~20	0.03	0.41	0.06
¹⁰⁶ Ag (47)	~ 24	0.0003	0.0003	0.0002
^{112m} In (49)	~21	0.04	0.05	0.06
^{135m} Cs (55)	~53	0.23	0.44	0.42
¹⁶³ Tb (65)	~20	4.0	0.75	0.92
^{84m} Br	~ 6	0.07	0.54	0.62
¹¹⁹ Cd	~3	0.07	0.16	0.25
¹⁶² Gd (64)	~8	2.8	0.72	0.23
¹⁶⁷ Dy (66)	~6	3.61	0.49	1.06
¹⁶⁸ Dy (66)	~9	6.06	0.66	1.66

Discrepancies of neodymium ratios in MOX (10.3% h.a.)

NEMEA-7/CIELO. A workshop of the Collaborative International Evaluated Library Organization 5-8 November 2013, Geel, Belgium

Conclusion

- ✓ In MONTEBURNS–MCNP5–ORIGEN2 calculations there is a considerable spread in concentrations of fission products while using different Fission Yield Libraries.
 In MOX fuel the discrepancies: ~ 25% for inert gases, up to 5 times for stable and long-life nuclides, up to 4000 times for short-life nuclides (1 min < T_{1/2} <1 h), and up to 10 orders of magnitude for nuclides (T_{1/2} <10 s).
- ✓ The lack of full-core benchmarks and difficulties in obtaining the experimental data, complicate estimation of the final nuclide accumulations taking into account the considerable discrepancies while using different nuclear data libraries.
- ✓ For improving the accurate depletion calculations the Benchmarktechnology is needed first of all for substantiation the final key nuclide accumulations.