Fission cross section measured at n_TOF with PPACs

L. Audoin¹, I. Duran², E. Leal², LS. Leong¹, <u>C. Paradela^{2*}</u>, D. Tarrío^{2**}, L. Tassan-Got¹ on behalf of the n_TOF Collaboration

Institut de Physique Nucléaire d'Orsay, France
 Universidad de Santiago de Compostela, Spain

*JRC-IRMM, Geel, Belgium ** Upsala University, Sweden

Contribution to NEMEA-7/CIELO Workshop, JRC-IRMM Geel, 5-7 of November 2013

Motivation

- Need of accurate nuclear data for innovative nuclear reactors, advanced fuel cycle and nuclear waste incineration
- Fission reactions: Nuclear structure and dynamics of deformed nuclei

 Measurements focused on isotopes involved in the thorium fuel cycle (also of interest for THFB)

n_TOF facility

- Intense spallation source
- Neutrons from thermal to GeV energies
- Excellent time resolution and low background

Fission setup: PPACs

- Thin gas detectors (transparent to neutrons)
- Fast anode singal (~500 ps time resolution)
- Position information from cathodes

Fission setup: targets

- 8 cm diameter targets to take advantage of the n_TOF fission collimator
- Thin samples (300 μg/cm²) and backings (2 μm de Al)
- Target characterization by alpha counting and RBS (total mass, oxygen content, sample inhomogeneities)
- Verification of the backing thickness by alpha energy loss

Detection setup

- 10 PPACs + 9 Targets
- ²³⁵U and ²³⁸U as references
- 5 signals per detectors registered by FADC
- Analysis off-line for fullydigitized neutron pulses

PPAC characteristics

- Insensitivity to gamma-flash and very fast signals allowing to measure GeV fission at n_TOF
- Thin material layers and low pressure gas minimize the neutron beam attenuation
- Coincidence method implies a better rejection of backgrounds (alpha radioactivity or spallation reactions)

The coincidence method

PPAC characteristics

- Possibility of having more than one detector crossed by a FF (timing conditions for target selection)
- Signal amplitude information improves background sustraction
- Detection efficiency strongly depends on the emission angle and the target thicknesses. Very sensitive to the angular distribution. Need to use anisotropy for correction
 - FF trajectory reconstruction => FFAD in a limited angular range

Main results (I)

²³⁴U(n,f) σ_f
 Phys. Rev. C 82 034601 (2010)

• ²³⁷Np(n,f) $\sigma_{\rm f}$

J. of Korean Phys. Soc. 59, 1908 (2011) Annals of Nuclear Energy 54, 36 (2012)

Main results (II)

²⁰⁹Bi(n,f) & ^{nat}Pb(n,f) σ_f Phys. Rev. C 83, 044620 (2011)

Main results (III)

- $^{238}U(n,f)/^{235}U(n,f) \sigma_{f}$ ratio (Paper in preparation)
- All results include efficiencies corrected by anisotropies (EXFOR experiments). Results with about 4% systematic uncertainties.

Phase II setup

- New setup with PPACs tilted with respect to neutron beam direction
- Full angular coverage. FFAD studies.
- Some new targets with a thinner backing (0.7 μm)

Figure 2: aluminum bottom + detectors and targets

First results at Phase II

2010-2011: FFAD for ²³²Th, ²³⁷Np and ^{238,235}U

D. Tarrío and LS. Leong PhD's (NIM submitted).

**Complete FFAD required to correct the cross section

²³⁸U/²³⁵U ratio

New measurements with a different setup (different efficiency dependence)

Last campaing (2012)

FFAD for ²³⁴U.
 Preliminary data presented in Final
 Erinda Workshop (E. Leal-Cidoncha)

Setup included two ²³⁵U and three ²³⁸U targets with different backings. *To be analysed yet*

Conclusions and perspectives

- PPACs used with coincidence method at n_TOF have provided neutron-induced fission data for an extended energy range
- Samples and backings are carefully characterized to improve the data accuracy
- FFAD is needed to proper treatment of the detection efficiency
- New method of efficiency determination in progress.
 Revision of cross section to improve the 4% accuracy.
- U-235 & U-238 targets have been included as references in all the measurements. Systematic studies are foreseen

Thanks for your attention