

Commission

Joint Research

Evaluation of neutron induced reaction cross sections for ¹⁹⁷Au in the resonance region

NEMEA-7/CIELO

International Collaboration on Nuclear Data A workshop of the Collaborative International Evaluated Library Organization 5-8 November 2013, Geel, Belgium

Bjorn Becker

http://irmm.jrc.ec.europa.eu

Cross section of neutron induced reactions on ¹⁹⁷Au

Standard cross section ¹⁹⁷Au(n,γ)

- Thermal (0.0253 eV)
- $\circ~$ 200 keV and 2.5 MeV

¹⁹⁷Au for neutron induced reactions between 4 keV and 200 keV is on the Nuclear Data High Priority Request List (HPRL)

Reference cross section for astrophysical calculations

Test-case for many nuclear reaction model codes

Same method will be used for ²³⁸U within the CIELO context

Collaboration effort

International cooperative effort to improve cross section standards

- Working Party on International Evaluation Cooperation of the Nuclear Energy Agency Nuclear Science Committee (WPEC)
- Coordinated Research Project organized by the International Atomic Energy Agency (CRP IAEA)

Results presented are based on:

- I. Sirakov et al., "Results of total cross section measurements for ¹⁹⁷Au in the neutron energy region from 4 to 108 keV at GELINA", accepted for publication in EPJA
- C. Massimi et al., "Neutron capture cross section measurements for ¹⁹⁷Au from 4 to 80 keV at GELINA", in preparation

European Commission **Contributors:**

B. Becker, S. Kopecky, C. Lampoudis, P. Schillebeeckx, R. Wynants

EC – JRC – IRMM

R. Capote

NAPC - Nuclear Data Section, International Atomic Energy Agency

E. Dupont

OECD Nuclear Energy Agency

R. Massarczyk

Helmholtz-Zentrum Dresden-Rossendorf, Germany

C. Massimi

Department of Physics, University of Bologna and sezione INFN of Bologna, Italy

Research

M. Moxon

Scientific visitor, EC - JRC - IRMM

V. Pronyaev

Institute of Physics and Power Engineering, Obninsk, Russia

I. Sirakov

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

A. Trkov, G. Žerovnik

Jožef Stefan Institute, Ljubljana, Slovenia

European Commission

Measurements at GELINA

FP #	FP length m	Capt.	Trams.	Sample	Thickness mm	Thickness at/b	Black Res. Filter	Anti-overlap Filter	Frequency Hz
4	50		х	¹⁹⁷ Au	3	1.757 10 ⁻²	Na, Co	¹⁰ B	800
4	50		x	OPB	-	-	Na, Co	¹⁰ B	800
4	50		х	BKG			Na, Co, S, W, Ag	¹⁰ B	800
5	12.5	х		¹⁹⁷ Au	0.01	5.754 10 ⁻⁵	Na, S	¹⁰ B	800
5	12.5	х		¹⁹⁷ Au	0.52	3.026 10 ⁻³	Na, S	¹⁰ B	800
5	12.5	х		¹⁹⁷ Au	1.01	6.896 10 ⁻³	Na, S	¹⁰ B	800
5	12.5	х		²⁰⁸ Pb	0.50	1.713 10 ⁻³	Na, S	¹⁰ B	800
5	12.5	х		OPB	-	-	Na, S	¹⁰ B	800
5	12.5	х		BKG			Na, Co, S, W, Ag	¹⁰ B	800
15	28.9	х		¹⁹⁷ Au	1.01	6.896 10 ⁻³	Na, S	¹⁰ B	800
15	28.9	х		²⁰⁸ Pb	0.50	1.713 10 ⁻³	Na, S	¹⁰ B	800
15	28.9	х		OPB	-	-	Na, S	¹⁰ B	800
15	28.9	х		BKG			Na, Co, S, W, Ag	¹⁰ B	800

Cross section parameterization in URR

Hauser-Feshbach statistical reaction theory with width fluctuations

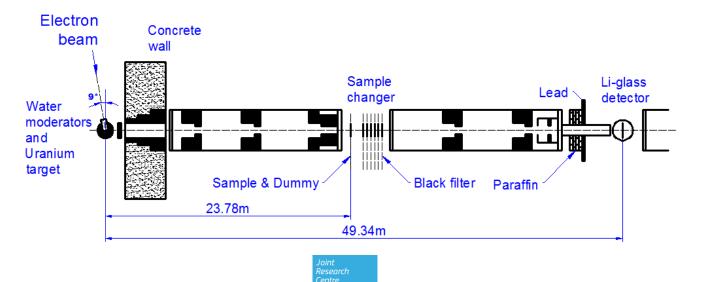
- Compatibility with the energy-dependent options of the ENDF-6 SLBW approach
- Energy dependent distant level parameters: energy dependent scattering radius

Independent model parameters at zero neutron energy:

- Scattering radius R' independent of the orbital angular momentum I
- Neutron strength functions $S_{n,l=0,1,2}$ for s-, p- and d-waves (I = 0,1 and 2)
- Capture transmission coefficients $T_{\nu,0}^{2+}$ and $T_{\nu,0}^{2-}$ for s- and p-waves

Smooth and weak energy dependence taken from optical model calculations with the dispersive coupled channel optical model (DCCOM) potential

¹⁹⁷Au(n,tot)


Measurement of the ¹⁹⁷Au(n,tot) cross section - Setup

Measurement at GELINA

• Flight path: 50 m

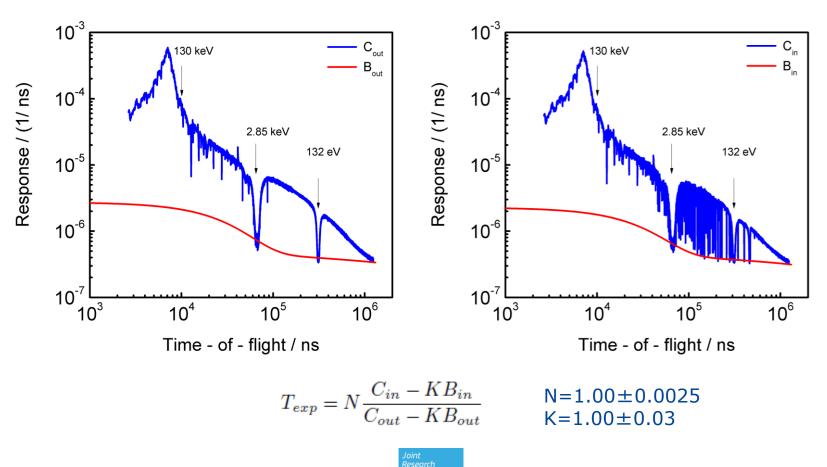
Filters:

- Anti-overlap filter: ¹⁰B
- Permanent black resonance filters: Na and Co
- Additional filters: S, W, and Ag


Measurement of the ¹⁹⁷Au(n,tot) cross section - Setup

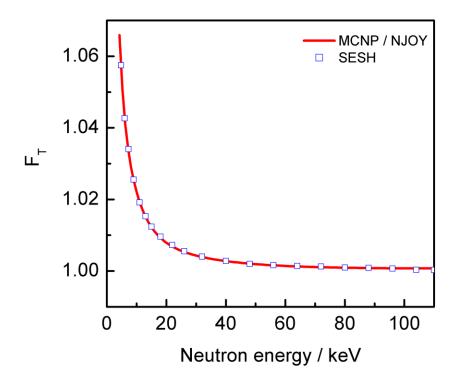
Detector:

- NE912 Li-glass scintillator enriched to 95% in ⁶Li
- EMI 9823 KQB photomultiplier


Sample details:

- Au metal foil
- 50 mm x 50 mm x 3 mm
- \circ (1.757 ± 0.004) 10⁻² at/b

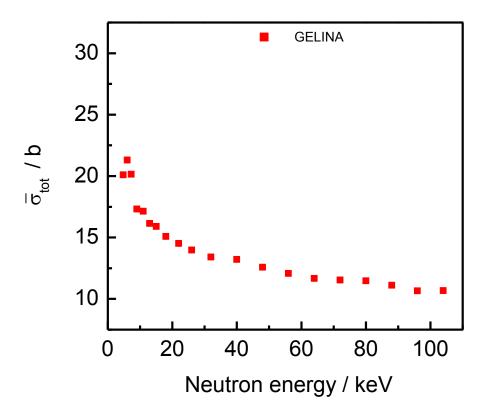
Count rate spectra

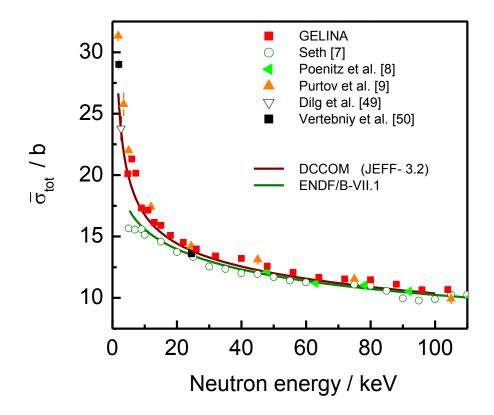


Resonance self-shielding correction

Correction factor based on:

- Resonance sampling with the SESH code
- MCNP simulation with probability tables produced by NJOY

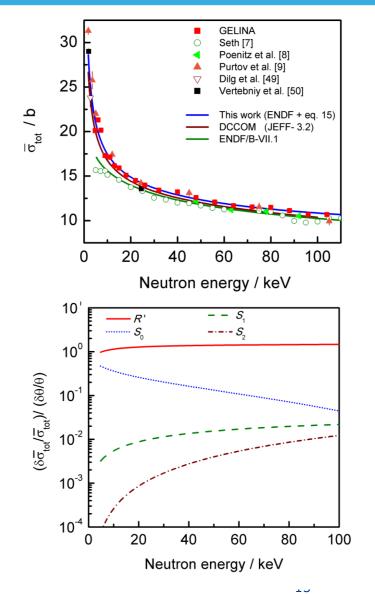

$$\overline{\sigma}_{tot} = \frac{-1}{n} \ln \frac{\overline{T}_{exp}}{F_T}$$


¹⁹⁷Au(n,tot) cross section in URR

¹⁹⁷Au(n,tot) cross section in URR

Final experimental data in AGS format

ACC formati		E_l / eV	E_h / eV	\mathbf{F}_T	$\overline{\sigma}_{tot}$ / b	$u_{\overline{\sigma}_{tot}}$ / b		А	GS	
AGS format:				- 1	- 101 / 2	Lot / L	u_u / b	S_K / b	S_N / b	S_n / \mathbf{b}
0	Efficient for storage	4000	5500	1.058	20.10	0.22	0.12	0.11486	-0.14226	0.04020
	Full constant for a f	5500	6500	1.043	21.30	0.23	0.15	0.09843	-0.14226	0.04259
0	Full separation of	6500	8000	1.034	20.15	0.20	0.12	0.07380	-0.14226	0.04030
	different components	8000	10000	1.026	17.31	0.20	0.12	0.06558	-0.14226	0.03462
	different components	10000	12000	1.020	17.13	0.20	0.13	0.06282	-0.14226	0.03424
	Vectrorized uncertainty	12000	14000	1.015	16.14	0.21	0.13	0.05627	-0.14226	0.03227
0	vectionzed uncertainty	14000	16000	1.012	15.90	0.21	0.14	0.05469	-0.14226	0.03180
	components	16000	20000	1.010	15.09	0.19	0.12	0.05188	-0.14226	0.03017
	components	20000	24000	1.007	14.51	0.20	0.12	0.04578	-0.14226	0.02901
		24000	28000	1.006	13.98	0.20	0.13	0.04452	-0.14226	0.02796
		28000	36000	1.004	13.41	0.19	0.11	0.04412	-0.14226	0.02682
		36000	44000	1.003	13.22	0.20	0.13	0.04263	-0.14226	0.02643
		44000	52000	1.002	12.58	0.20	0.13	0.03287	-0.14226	0.02516
Final uncertainty:		52000	60000	1.002	12.08	0.20	0.14	0.03249	-0.14226	0.02416
			68000	1.001	11.67	0.20	0.13	0.02258	-0.14226	0.02335
les	less than 2.5 %		76000	1.001	11.53	0.20	0.14	0.02152	-0.14226	0.02305
		76000	84000	1.001	11.47	0.25	0.20	0.04124	-0.14226	0.02293
		84000	92000	1.001	11.11	0.22	0.17	0.02326	-0.14226	0.02221
		92000	100000	1.001	10.65	0.21	0.15	0.01676	-0.14226	0.02130
		100000	108000	1.001	10.68	0.21	0.15	0.01376	-0.14226	0.02135



Sensitivity & Resonance Parameters

Model parameter adjustment

- \circ Measurement sensitive to R' and S₀
- Fixed values for S_1 and S_2 $S_1 = 5.64 \quad 10^{-5}$ $S_2 = 3.48 \quad 10^{-4}$

			Correla	tion matrix
R' / fm	9.12	± 0.09	1	-0.43
$S_0 / 10^{-4}$	1.93	± 0.03	-0.43	1

¹⁹⁷Au(n,γ)

Status of the ¹⁹⁷Au(n,γ) cross section in URR 5.0 Standard, NDS 110 (2009) 3215 $(\sigma(n,\gamma) \times E^{1/2})$ / (b x keV^{1/2}) Recommended, NDS 110 (2009) 3215 Macklin + Ratynski, PRC C37 (1988) 595 4.5 Borella et al., NSE 152 (2006) 1 Lederer et al., C83 (2011) 034608 4.0 3.5 3.0 2.5

Neutron energy / keV

10

100

1000

Measurement of the ¹⁹⁷Au(n,γ) cross section - Setup

Measurements at GELINA:

- Flight path: 12.5 m and 30 m
- Collimation: 80 mm in diameter at the sample position
- ¹⁰B anti-overlap filter
- Fixed Na and S black resonance filters
- Additional filters: Co, W, Ag

Flux measurement:

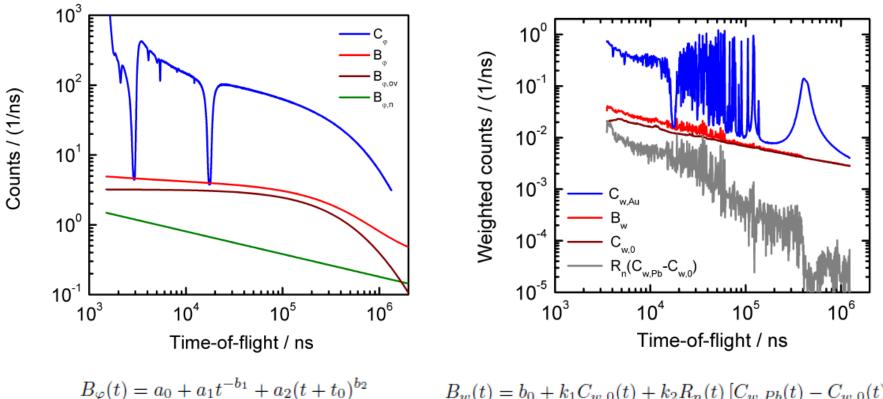
- ¹⁰B Frisch gridded ionisation chamber
- \circ Double chamber with a common cathode loaded with two layers of ¹⁰B.
- 80 cm before the sample

Measurement of the ¹⁹⁷Au(n,γ) cross section - Setup

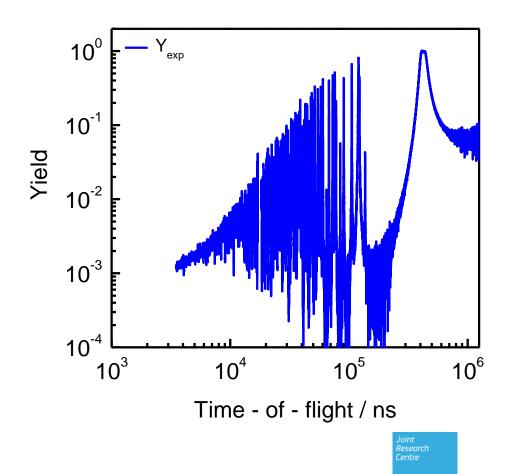
Prompt γ detection system:

- C₆D₆-based liquid scintillators (NE230) at an angle of 125°
- boron-free quartz windowed EMI9823-KQB photomultiplier
- total energy detection principle in combination with the pulse height weighting technique

Sample details:


- $_{\odot}$ 3 Au samples with different thickness
- $_{\odot}$ ^{208}Pb sample for neutron sensitivity

Count rate spectra

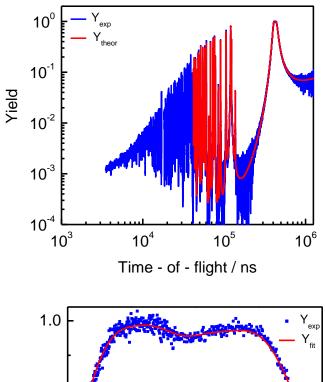


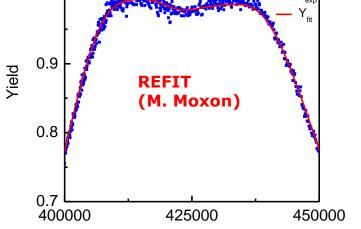
 $B_w(t) = b_0 + k_1 C_{w,0}(t) + k_2 R_n(t) \left[C_{w,Pb}(t) - C_{w,0}(t) \right]$

Capture yield

$$Y_{\text{exp}} = \frac{N_C}{S_n + E_n \frac{A}{1+A}} \frac{C_w - B_w}{C_\varphi - B_\varphi} \frac{Y_\varphi}{T_\varphi}$$

$$\frac{Y_{\varphi}}{T_{\varphi}} = e^{n_{\varphi}\sigma_{tot}} \left(1 - e^{-n_{\varphi}\sigma_{tot}}\right) \frac{\sigma_{\alpha}}{\sigma_{tot}}$$


Normalization


Internal normalization:

- Saturated resonance at 4.9 eV with $\Gamma_n << \Gamma_\gamma$
- No reference cross section except for shape of ${}^{10}B(n, \alpha)$
- Uncertainty less than 1%

$$\mathsf{Y}_{\mathsf{exp}} = \underbrace{\mathsf{N}}_{\mathsf{C}_{\varphi}} - \mathsf{B}_{\psi} \\ \mathsf{C}_{\varphi} - \mathsf{B}_{\varphi} \\ \mathsf{Y}_{\varphi}$$

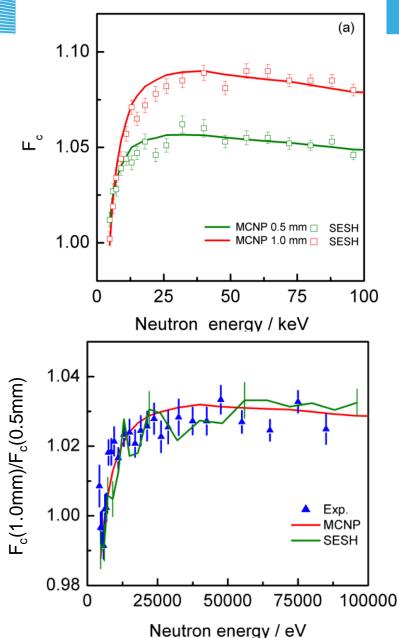
Thickness mm	$\begin{array}{c} {\rm Area} \\ {\rm cm}^2 \end{array}$	N_C	$N_{C,51.45}'$
1.01	51.22	0.995	0.991
0.52	51.45	1.000	1.000
0.01	50.39	1.026	1.005

Time - of - flight / ns

Joint Research Centre

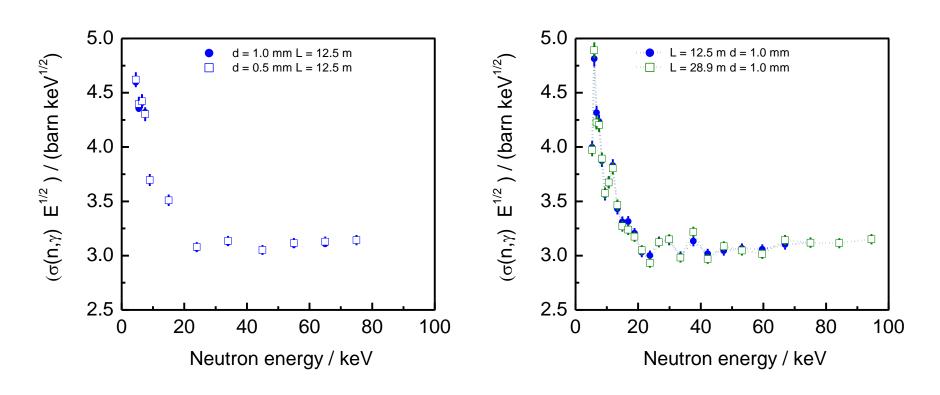
Self-shielding, multiple interaction correction

European

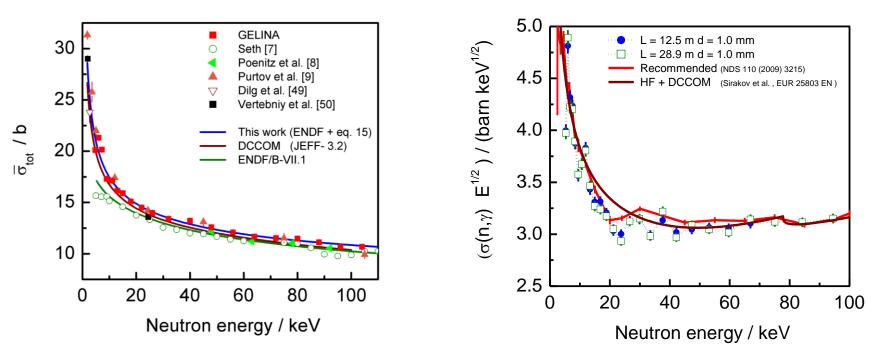

Research

Commission

Correction factor based on:


- Resonance sampling with the SESH code
- MCNP simulation with probability tables produced by NJOY

$$\overline{Y}_{\exp} = F_c n \overline{\sigma}_{\gamma}$$


¹⁹⁷Au(n,γ) cross section

¹⁹⁷Au(n,tot) & ¹⁹⁷Au(n,γ) cross section

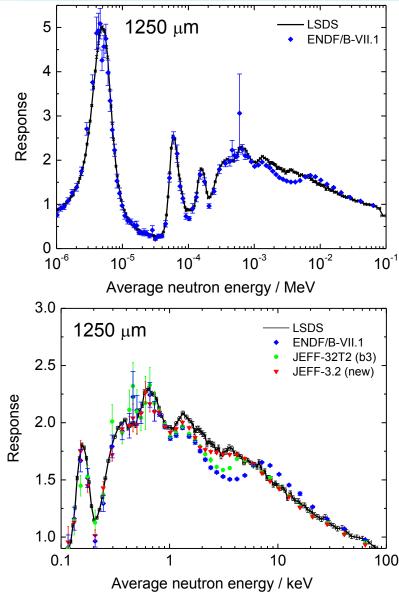
Both results will be used in the parameterization of the URR (R', $S_{n,l=0,1,2}, T_{\gamma,0}^{2+}, T_{\gamma,0}^{2-}$) + HZDR nELBE data (100 keV to 10 MeV)

Verification of new parameters

Data processing with NJOY.99 to format and application consistency

MCNP Simulation of benchmark measurements:

- Thick sample time-of-flight capture measurement
 - Both capture and scattering sensitivity
 - Energy dependence
- Lead Slowing Down Spectrometer measurement
 - Lower resolution but still energy dependent
 - High flux


LSDS measurements

Simulation of a LSDS measurement from LPSC IN2P3:

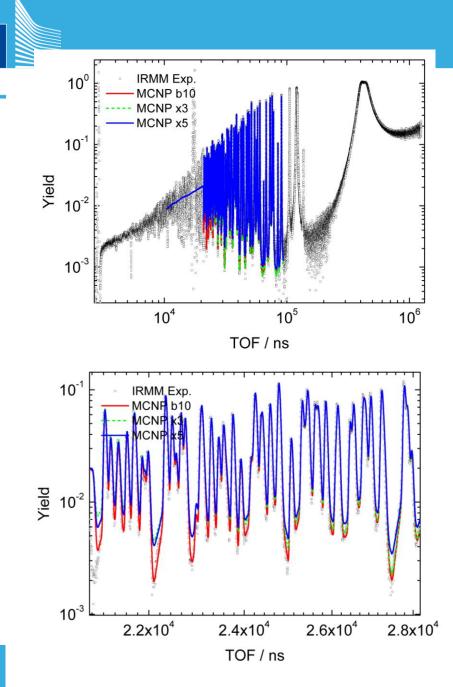
- MCNP simulation
- Cross section data preparation with NJOY
- Simulation includes resolution of the spectrometer

Independent of the measurements to deduce the cross section.

Challenging method for capture.

Thick sample measurements

Simulation of a thick sample measurement:


- MCNP simulation
- Cross section data preparation with NJOY

European

Commission

- Simulation includes resolution of the spectrometer
- Sensitive to capture and scattering

Energy dependence: advantage over integral benchmarks

Conclusion

Summarized work is the result of an international collaboration.

New evaluation of gold resonance parameters in the RRR and in particular in the URR is currently being performed.

The final parameterization is checked against thick target TOF and LSDS measurements.

Contributors:

B. Becker, S. Kopecky, C. Lampoudis, P. Schillebeeckx, R. Wynants

EC – JRC – IRMM

R. Capote

NAPC - Nuclear Data Section, International Atomic Energy Agency

E. Dupont

OECD Nuclear Energy Agency

R. Massarczyk

Helmholtz-Zentrum Dresden-Rossendorf, Germany

C. Massimi

Department of Physics, University of Bologna and sezione INFN of Bologna, Italy

M. Moxon

Scientific visitor, EC - JRC - IRMM

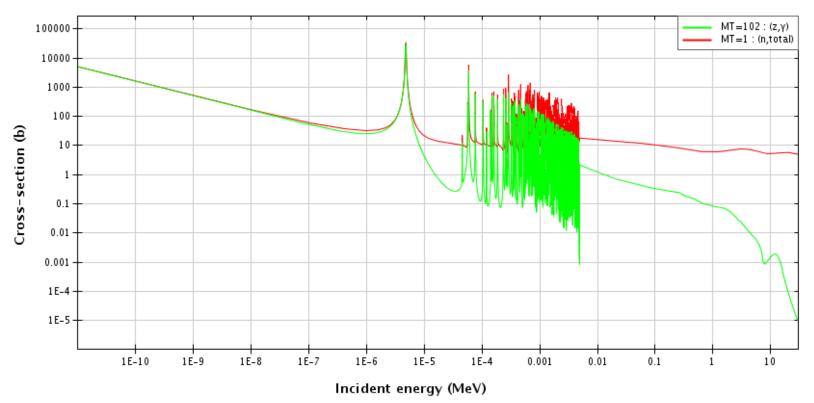
V. Pronyaev

Institute of Physics and Power Engineering, Obninsk, Russia

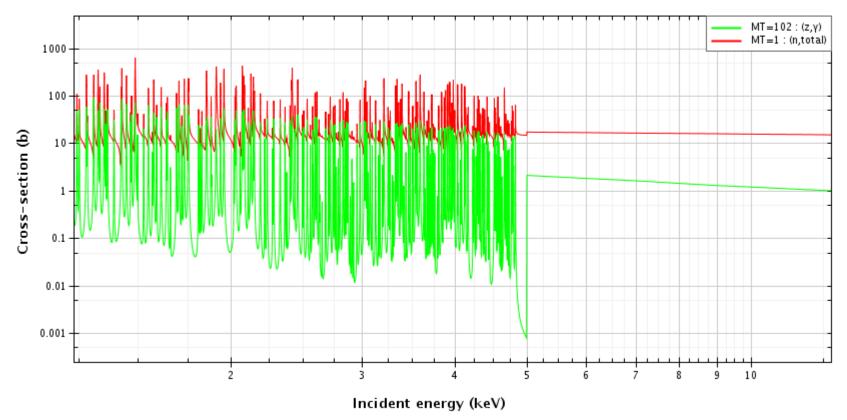
I. Sirakov

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

A. Trkov, G. Žerovnik


Jožef Stefan Institute, Ljubljana, Slovenia

Thank you for your attention


Incident neutron data / ENDF/B-VII.1 / Au197 / / Cross section

Incident neutron data / ENDF/B-VII.1 / Au197 / / Cross section

Resonance parameters

Update of resonance parameters in the RRR (< 2keV) based on new transmission and capture measurements at GELINA

Energy eV	$\ell \ \hbar$	J^{π} \hbar	$\Gamma_{\gamma} \text{meV}$	Γ_n meV	$g\Gamma_n$ meV
$\begin{array}{c} 4.900 \pm 0.002 \\ 46.669 \pm 0.002 \\ 58.078 \pm 0.004 \\ 60.291 \pm 0.001 \\ 78.500 \pm 0.003 \\ 107.033 \pm 0.004 \\ 122.30 \pm 0.02 \\ 144.410 \pm 0.005 \\ 151.393 \pm 0.004 \end{array}$	$ \begin{array}{c} 0 \\ 0^{a} \\ 0 \\ 0 \\ 0^{a} \\ 0 \\ 0^{a} \\ 0 \\ $	$ \begin{array}{c} 2 \\ 1^{a} \\ 2 \\ 1 \\ 2^{a} \\ 1^{a} \\ 1 \\ 2 \end{array} $	$\begin{array}{c} 121.4 \pm 0.3 \\ 127 \pm 8 \\ 113 \pm 3 \\ 118 \pm 6 \\ 124 \pm 5 \\ 123 \pm 3 \\ 121^{b} \\ 121^{b} \\ 121^{b} \\ 121^{b} \end{array}$	$\begin{array}{c} 14.96 \pm 0.02 \\ \\ 70.7 \pm 0.5 \\ 17.0 \pm 0.2 \end{array}$ $\begin{array}{c} 9 \pm 1 \\ 22.3 \pm 0.4 \end{array}$	$\begin{array}{c} 0.08 \pm 0.01 \\ 1.60 \pm 0.01 \\ 4.89 \pm 0.05 \\ 0.56 \pm 0.013 \end{array}$
$egin{array}{r} 163.07 \pm 0.01 \ 165.08 \pm 0.01 \ 190.03 \pm 0.02 \end{array}$	$\begin{array}{c} 0 \\ 0^a \\ 0^a \end{array}$	$\frac{1}{2^{a}}$ 1^{a}	129 ± 10 121^{b} 121^{b}	55.2 ± 0.08	$\begin{array}{c} 6.34 \pm 0.09 \\ 18.41 \pm 0.03 \end{array}$

^a No conclusive assignment.

^b Average radiation width.