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Topics

= Convergence issues for rotational nuclei

= Validity of the adiabatic limit & of near-even approx.
= Previous actinide optical potentials for neutrons

= A new optical potential fit for actinide nuclei

= Uncertainties in extracting compound cross section

= Further coupled-channels effects in capture
« Beyond schematic-DWBA for semi-direct captures.
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Convergence issues for rotational nuclei
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Ratio of Compound Cross Sections

Sets of 5 to 13 channels
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Adiabatic Limit (all excitation
energies E*=0 MeV)

Adiabatic limit is:

= Zero excitation energies for the ground state band E*=0
= Equivalent to large (infinite) moment of inertia of target
= Target then does not rotate during the neutron reaction.

Can then prove:

= Oy = average over all nuclear orientations
of the CN production for each orientation.

- for all nuclei (even or odd; any K)

= This also holds in the PWBA limit (Plane Wave Born Approximation.

Dietrich, Kawano & Thompson, PRC 85, 044611 (2012)
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Adiabatic Approximation is
Exceptionally Good! nonadiabatiladiabatic
Even at neutron energies .
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Previous rotational calculations

= \WWe conclude that even-even nuclei need coupled-
channels sets of s=6 levels (with gs).

Even-odd nuclei require up to 12 levels for accuracy

TALYS: default calculations are
« ‘maxrot=2" (levels in addition to the gs: s=3)

FLAP2.2 actinide potential fitted with s=3

Soukhovitskii fitted his potentials
« Using ‘saturated coupling’ of maxrot=4 (s=95)

Clear need to re-evaluate calculations and
re-evaluate optical potentials.
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Previous actinide optical potentials

Soukhovitskii (2004);

= best actinide potentials to date

= His s=5 calculations indeed converged for most observables: mainly

Oror; Oe|(@), and 0ineI(G)-
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= However: they are not fully converged for

absorption / CN-production: oy -

—
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New optical potential fit for actinides
= Improve ‘FLAP 2.2" from Frank Dietrich (LLNL)

« Parameters are piecewise-linear functions of neutron
energy.

- Soukhovitskii has analytic functions:
— not so easy to adjust the various energy regions;
— We want a fit independent of this.

« S0 we start with a deformed Koning-Delaroche
global potential

. Fit 238U, then 232Th, and then other actinides.

« Make a ‘FLAP 3.0" parameter set
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FLAP 3.0 potential fit for actinides (a)
Blue: Soukhovitskii (2004).  wwly  E,=142MeV .
Green: Soukhovitskii (2004) '

with KD formula for Fermi energies.
(p,=0.223, $,=0.056) 1000 |

Red: new FLAP3.0
($,=0.213, $,=0.043 from re-analysis
of inelastic cross sections)
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FLAP 3.0 potential: more elastics (b)
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FLAP 3.0

potential:

total, CN (c)
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FLAP 3.0 potential: low-E neutron (d)
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Uncertainties in extracting o(CN)

Note again the large
variations in o(CN)
even when o(TOT) is
similarly fitted:

Blue: Soukhovitskii (2004).

Green: Soukhovitskii (2004) with KD
formula for Fermi energies.

Red: new FLAP3.0
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Related.:
Semi-direct capture mechanisms

= |deally: want a unified treatment of
« two-step capture mechanisms
« other coupled-channels processes

= Semi-direct E1 capture is when:
1. GDR inelastically excited,
2. leaving neutron in final bound state,
3. GDR later decays, emitting the E1 gamma-ray.

= Direct and semi-direct interfere coherently.
« GDR collectivity is strong: should be coupled-channels
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Semi-direct capture mechanisms

Calculation of capture
208Pn(n,y) via giant-
dipole resonance
(GDR)

Comparison with
CUPIDO, which uses
on-shell form of
Green'’s function.

Slightly different
interference shapes.

CC framework is more
general.
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Collective transitions in capture

= Neutron-nucleus scatterings require coupled-
channels calculations.
- Rotation models for all known band, even beyond
« Vibrational models for 1- or 2-phonon excitations

= For consistency, should include these couplings also
in the final neutron bound states.

= Still is some debate about imaginary parts W of
optical potentials in incoming & final channels.
- Incoming: W/2 related to resonance averaging interval
— OR: to the ‘floor’ between resonances.

 Final: W/2 gives spreading of doorways into the
discrete (bound) compound microstates.

7 b
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cross section o (E) [mb]

Role of 2* state in °°Fe(n,y) captures:
direct contribution only

Preliminary, from
Goran Arbanas

Real incoming potentials: resonances Complex incoming potentials: smoothed
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cross section o'(E) [mb]
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Direct contribution should be less than ‘floor’ between resonances.
This favors non-spherical models (red lines).
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Conclusions

= \We need to pay good attention to:
« Convergence of inelastic scattering in rotational models

« Uncertainties (and covariances!) in extraction of CN-
production cross sections from other observables

« Developing a new actinide potential: e.g. FLAP3.0

= \We can benefit from:

« Good physical accuracy of adiabatic model for rotational
excitations.

- Use of near-even-even approximation for odd nuclei
« Coupled-channels treatments of 2-step capture processes
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