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§  Convergence issues for rotational nuclei 
§  Validity of the adiabatic limit & of near-even approx. 
§  Previous actinide optical potentials for neutrons 
§  A new optical potential fit for actinide nuclei 
§  Uncertainties in extracting compound cross section 
§  Further coupled-channels effects in capture 

•  Beyond schematic-DWBA for semi-direct captures. 

Topics 
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Convergence issues for rotational nuclei 
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Converged Results for σCN ratio for 
excited/gs. 
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Adiabatic Limit (all excitation 
energies E*=0 MeV) 
Adiabatic limit is: 

§  Zero excitation energies for the ground state band E*=0 

§  Equivalent to large (infinite) moment of inertia of target 

§  Target then does not rotate during the neutron reaction. 

Can then prove: 

§  σCN = average over all nuclear orientations  
of the CN production for each orientation. 
•  for all nuclei  (even or odd; any K) 

§  This also holds in the PWBA limit (Plane Wave Born Approximation. 

Dietrich, Kawano & Thompson, PRC 85, 044611 (2012) 
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Adiabatic Approximation is 
Exceptionally Good! 

Even at neutron energies  
much less than E* excitations: 

§  This implies: 
•  Validity of spectator approximation 

for target spin 
•  Correct to average transmission  

coefficients over target spins  
(with m-state-count weighting) 

•  CN production independent of both I,K 
•  Can predict any transition IKèI’K’ 

from knowing all 00èJ0 transitions! 
See Lagrange et al, NSE (1982). 

n+235,238U, ratio  
nonadiabatic/adiabatic 
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§  We conclude that even-even nuclei need coupled-
channels sets of  s=6 levels (with gs). 

§  Even-odd nuclei require up to 12 levels for accuracy 
§  TALYS: default calculations are   

•  ‘maxrot=2’  (levels in addition to the gs: s=3) 

§  FLAP2.2 actinide potential fitted with s=3 
§  Soukhovitskii fitted his potentials 

•  Using ‘saturated coupling’ of maxrot=4    (s=5) 

§  Clear need to re-evaluate calculations and  
re-evaluate optical potentials. 

Previous rotational calculations 
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Soukhovitskii (2004):  
§  best actinide potentials to date 

§  His s=5 calculations indeed converged for most observables: mainly 
σTOT, σel(θ), and σinel(θ). 

§  However: they are not fully converged for  
absorption / CN-production: σCN . 

Again need to re-examine  
the determination of CN-cross  
section from other observables. 

Previous actinide optical potentials 
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§  Improve ‘FLAP 2.2’ from Frank Dietrich (LLNL) 
•  Parameters are piecewise-linear functions of neutron 

energy. 
•  Soukhovitskii has analytic functions:  
—  not so easy to adjust the various energy regions; 
—  We want a fit independent of this. 

•  So we start with a deformed Koning-Delaroche  
global potential 

•  Fit 238U, then 232Th, and then other actinides. 

•  Make a ‘FLAP 3.0’ parameter set 

New optical potential fit for actinides 
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FLAP 3.0 potential fit for actinides (a) 
Blue: Soukhovitskii (2004). 

Green: Soukhovitskii (2004) 
with KD formula for Fermi energies. 
(β2=0.223, β4=0.056) 

Red: new FLAP3.0 
(β2=0.213, β4=0.043 from re-analysis 
of inelastic cross sections) 

 

Results for neutron+238U 
scattering. 
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FLAP 3.0 potential: total, CN (c) 
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FLAP 3.0 potential: low-E neutron (d) 
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Uncertainties in extracting σ(CN) 
Note again the large 
variations in σ(CN) 
even when σ(TOT) is 
similarly fitted: 
 

Blue: Soukhovitskii (2004). 

Green: Soukhovitskii (2004) with KD 
formula for Fermi energies. 

Red: new FLAP3.0 
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§  Ideally: want a unified treatment of  
•  two-step capture mechanisms 
•  other coupled-channels processes 

§  Semi-direct E1 capture is when:  
1.  GDR inelastically excited, 
2.  leaving neutron in final bound state, 
3.  GDR later decays, emitting the E1 gamma-ray. 

§  Direct and semi-direct interfere coherently. 
•  GDR collectivity is strong: should be coupled-channels 

Related: 
Semi-direct capture mechanisms 
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Semi-direct capture mechanisms 
§  Calculation of capture 

208Pn(n,γ) via giant-
dipole resonance 
(GDR) 

§  Comparison with 
CUPIDO, which uses 
on-shell form of 
Green’s function. 

§  Slightly different 
interference shapes. 

§  CC framework is more 
general. 

1 10

Neutron energy (MeV, lab)

1

10

100

1000

C
a

p
tu

re
 c

ro
ss

 s
e

ct
io

n
 (

m
ic

ro
b

a
rn

s)

Cupido Direct
  Direct + GDR
  Direct + PDR
Fresco Direct+GDR+PDR
   Direct + PDR
   Direct + GDR
   Direct
Bergqvist data

208Pn(n,γ) capture to g9/2 ground state 

NP A191 (1972) 641 
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§  Neutron-nucleus scatterings require coupled-
channels calculations. 
•  Rotation models for all known band, even beyond 
•  Vibrational models for 1- or 2-phonon excitations 

§  For consistency, should include these couplings also 
in the final neutron bound states. 

§  Still is some debate about imaginary parts W of 
optical potentials in incoming & final channels. 
•  Incoming:  W/2 related to resonance averaging interval 
—  OR:        to the ‘floor’ between resonances.  

•  Final:         W/2 gives spreading of doorways into the 
discrete (bound) compound microstates. 

Collective transitions in capture 
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Role of 2+ state in 56Fe(n,γ) captures: 
direct contribution only 

Direct contribution should be less than ‘floor’ between resonances. 
This favors non-spherical models (red lines). 
 

Real incoming potentials: resonances  Complex incoming potentials: smoothed  

Preliminary, from 
Goran Arbanas 



Lawrence Livermore National Laboratory LLNL-PRES-645406 19 

§  We need to pay good attention to: 
•  Convergence of inelastic scattering in rotational models 
•  Uncertainties (and covariances!) in extraction of CN-

production cross sections from other observables 
•  Developing a new actinide potential: e.g. FLAP3.0 

§  We can benefit from: 
•  Good physical accuracy of adiabatic model for rotational 

excitations. 
•  Use of near-even-even approximation for odd nuclei 
•  Coupled-channels treatments of 2-step capture processes 

Conclusions 




