CIELO Related Nuclear Data Measurements at the Gaerttner LINAC Center at RPI

Y. Danon

Gaerttner LINAC Center, Rensselaer Polytechnic Institute, Troy, NY 12180

2013 NEMEA-7/CIELO Workshop, 5-8 November 2013, Geel, Belgium
RPI Nuclear Data Group

RPI Faculty
Prof. Yaron Danon - LINAC Director
Prof. Li Liu
Prof. (Emeritus) Robert C. Block

BMPC/KAPL
Dr. Greg Leinweber
Dr. Devin Barry
Dr. Michael Rapp
Dr. Tim Donovan
Mr. Brian Epping
Dr. John Burke

Technical Staff
Peter Brand
Matt Gray
Martin Strock
Azeddine Kerdoun

Graduate Students
Rian Bahran (PhD) – now at LANL
Ezekiel Blain
Dave Williams
Adam Daskalakis
Brian McDermott

Undergraduate Students
Adam Weltz
Nicholas Thompson
Sean Piela (MS) (Graduated)
Kemal Ramic
Carl Wendorff
Kelly Rowland
Amanda Youmans

RPI Nuclear Data Group
The Nuclear Data Program at the Gaerttner LINAC Center

- Driven by a 60 MeV pulsed electron LINAC $\sim 10^{12}$ n/s
- **Neutron transmission**
 - Resonance region: 0.001 eV - 1000 keV,
 - High energy region: 0.4 - 20 MeV
- **Neutron Capture**
 - Resonance region: 0.01-1000 eV
 - New detector array at 45m: 1 keV - 500 keV
- **Neutron Scattering**
 - High energy region: 0.4 MeV - 20 MeV
- **Prompt Fission neutron spectrum**
- **Lead Slowing Down Spectrometer**
 - Fission cross section and fission fragment spectroscopy.
 - (n,α), (n,p) and (n,γ) cross sections on small (radioactive) samples.
Neutron Scattering

• Provide accurate benchmark data for scattering cross sections and angular distributions in the energy range from 0.5 to 20 MeV
• Can be developed to provide differential elastic and inelastic scattering cross section measurements
• Design a flexible system: now also used for fission neutron spectra measurements
Methodology

• Measure the scattering yield at several angles around the sample.
 – Use TOF to measure the neutron incident energy
 – Use detectors that are insensitive to (capture/inelastic/background) gamma

• Compare the measurements to detailed simulations of the system with different cross section libraries
 – Characterize the incident neutron flux
 – Characterize the neutron detection efficiency

• Identify energy/angle regions where improvement is needed.
TOF Scattering Yield Measurement

• Measure the total TOF \(t = t_1 + t_2 \)
• For all scattering events \(E_2 < E_1 \)
• In most cases the energy loss is small \(E_1 \sim E_2 \)
• Since \(t_1 \gg t_2 \) and \(E_1 \sim E_2 \) then for presentation the incident neutron energy \(E_1 \) is calculated using \(t \) and \(L = L_1 + L_2 \)

\[
L_1, t_1, E_1 \\
L_1 \sim 30m \\
\]

\[
L_2 \sim 0.5m \\
E(t) \approx m_n c^2 \cdot \left(\frac{1}{\sqrt{1 - (\frac{L}{c \cdot t})^2}} - 1 \right)
\]
First Order Approximation of the Scattering Yield

\[Y(E, \phi) \propto \eta(E') \Phi(E) \left(1 - e^{-\Sigma_T(E)L} \right) \frac{f(E, \phi)}{2\pi} \]

Detector Efficiency

Probability to Interact

Incident Neutron Flux

Probability to Scatter in direction \(\phi\)

In this approximation - multiple scattering is ignored
Experimental Setup Overview

- Air
- Isotropic Neutrons
 - Tantalum Target
 - Target Room
 - Electron Beam (50 MeV) 5nsec pulse at 400 Hz
 - 6 m
 - Vacuum
 - West Drift Tube Collimation System
 - Concrete
 - ¾” U238
 - 24 m
 - 25m Station Wall
 - Scattering Experiment Setup
 - EJ301 Detector
 - Scattering Sample
Scattering Detection System: Experimental Setup

Low mass sample holder
Scattering Detection System: Experimental Setup

• Detector Array
 – 8 EJ301 Liquid Scintillation Detectors
 – 8 A/D channels
 – Pulse Shape discrimination in TOF

• Data Processing System
 – Data Processing Computer (SAL) – Control Room

• Computer Controlled Power Supply
 – Chassis - SY 3527 Board - A1733N

• Sample Holder / Changer
DAQ system

- All DAQ is automated using script based software running under Windows
- Alternate between sample, graphite and open (background) measurements
- Each position is measured for about 10 min
- Fission chamber monitors are used to normalize beam intensity fluctuations.
- Detector/system gain is periodically aligned using 22Na
Neutron Gamma Separation with Pulse Shape Analysis

- Digitize 120 ns to get all the event-generated detector pulses
- Use pulse shape classification to discriminate gammas (~1-2% of gammas are recorded as neutrons)
- Developed a pulse rejection method to eliminate false neutrons.

![Graph showing pulses and energy distribution](image-url)
Flux Shape Measurement

- Use a fission chamber with ~391 mg 235U in the sample position
- Use ENDF/B 7.1 fission cross section for 235U
- Correct for transmission of all materials between the source and sample
- Compare to a similar measurement using EJ301 and SCINFUL calculated efficiency
- Combine the two data sets using fission for E< 1 MeV
Efficiency as a Function of Energy

- **Objective:**
 - MCNP simulation of EJ301 response in the sample position must precisely agree with the measurement

- **Methodology:**
 - Use the measured flux as a source in MCNP simulation of the in-beam detector response
 - In MCNP set the detector efficiency $\eta=1$ (tally only the neutron flux shape)
 - Divide the measured response by the simulation results to get the efficiency $\eta(E)$ for each detector
 - During the experiment periodic gain calibrations are done to minimize gain shift.
Neutron Beam Collimation

• Characterize the collimation system
 – Ensure beam diameter agrees with sample diameter of 7.62 cm
 – Verify measurements and calculations agree
Data Reduction

• Sum all files and dead time correct.
• The experimental count rate corrected for background and false neutrons:

\[Rn_i = Rn_i^s - fn_i^s - \frac{M^S}{M^O} \cdot (Rn_i^o - fn_i^o) \]

- \(Rn_i^s, Rn_i^o \) - Sample and open neutron counts at TOF channel \(i \)
- \(fn_i^s, fn_i^o \) - Sample and open false neutron counts for TOF channel \(i \)
- \(M^S, M^O \) - Open and sample monitor counts for the run

The false neutron correction:

\[fn_i = \sum_{j=1}^{n_\gamma} f(A_j) \]

- \(n_\gamma \) - Number of gammas in TOF channel \(i \)
- \(f(A_j) \) - False neutron correction factor for pulse area \(A_j \)
MCNP Simulation Geometry

- Use ASAP (As Simple As Possible) approach
- Use array of point detector tally F5 to model the EJ301 detector
 - Convolute the tally with the detector efficiency
- Include ¾” Depleted U filter in the simulation
- Include windows (Al)
- Include recent improvements of vacuum tube near the sample
Data Analysis

• Compare the shape (as a function of TOF) between the measurements and simulations
• Use graphite as a reference in all measurements
 – Differences between the measurement and simulation of graphite are considered systematic errors
• Measurements of Be, Mo and Zr
 – The efficiency was derived from SCINFUL calculations
 – Neutron flux shape based on a fit to in-beam measurements with EJ-301 and Li-Glass
 – Used individual detector normalization of the simulation to the experimental data based on graphite measurement
• For 238U and 56Fe experiment
 – Flux was derived from 235U and EJ301 in-beam measurements
 – The efficiency was adjusted to match the MCNP calculations to the in-beam measured data
 – Use one normalization factor for all detectors (global normalization)
238U Scattering - Forward Angles

<table>
<thead>
<tr>
<th>Library</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENDF/B-VII.1</td>
<td>4.4</td>
</tr>
<tr>
<td>ENDF/B-VI.8</td>
<td>2.7</td>
</tr>
<tr>
<td>JENDL-4.0</td>
<td>2.5</td>
</tr>
<tr>
<td>JEFF-3.1</td>
<td>3.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Library</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENDF/B-VII.1</td>
<td>1.8</td>
</tr>
<tr>
<td>ENDF/B-VI.8</td>
<td>3.7</td>
</tr>
<tr>
<td>JENDL-4.0</td>
<td>1.3</td>
</tr>
<tr>
<td>JEFF-3.1</td>
<td>2.2</td>
</tr>
</tbody>
</table>
238U Scattering – Back Angles

<table>
<thead>
<tr>
<th>Library</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENDF/B-VII.1</td>
<td>0.6</td>
</tr>
<tr>
<td>ENDF/B-VI.8</td>
<td>4.0</td>
</tr>
<tr>
<td>JENDL-4.0</td>
<td>0.8</td>
</tr>
<tr>
<td>JEFF-3.1</td>
<td>1.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Library</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENDF/B-VII.1</td>
<td>3.7</td>
</tr>
<tr>
<td>ENDF/B-VI.8</td>
<td>4.6</td>
</tr>
<tr>
<td>JENDL-4.0</td>
<td>1.2</td>
</tr>
<tr>
<td>JEFF-3.1</td>
<td>4.7</td>
</tr>
</tbody>
</table>
Observations for 238U

- Differences between the evaluations are visible and exceed the experimental errors.
- To get better agreement the evaluations need to be adjusted mostly at back angles.
- Overall JENDL 4.0 has the lowest χ^2
The energy resolution is sufficient to show some discrepancies in the resonance region (E<850 keV)
Fe-56 Scattering Measurement – Results 153°

- Above the first inelastic state (E>847 keV) there are some differences with the evaluations.
- We are exploring the possibility to extract double differential cross section data from these experiments.

![Graph showing scattering results](image)
High Energy 56Fe Transmission

Experimental Setup

Detector

56Fe Samples
56Fe Total Cross Section Measurements (NCSP)
250m Flight Path

- Measured at 250m flight station with 8ns pulse width.
- Two sample thicknesses were used: 0.271767 a/barn (3.22 cm) and 0.649742 a/barn (7.69 cm).
- Sample is 99.87% metallic 56Fe.
- Can help extend the resolved resonance region above 892 keV.
- Only two other data sets available on EXFOR above 900 keV (Harvey et al. and Cornelis et al.).
- The JEFF 3.1 evaluation follows the Cornelis et al. data.
56 Fe Total Cross Section Measurements

- New data has good energy resolution but lower than Cornelis et al.
- The Cornelis et al. data is based on an oxide sample Fe₂O₃ (need to correct for O₃)
- Above 10 MeV the data has low errors and is in good agreement with both ENDF/B-VII.0 and JEFF 3.1
Simultaneous Measurement of ^{235}U Fission and Capture
Measurements of 235U Capture & Fission Yields

- **Thermal** measurement with enriched 235U sample
- 16 Segment Multiplicity Detector with 4 E_γ groups
- Good agreement with SAMMY calculations
- Extracting Capture Yield from data with mixture of capture and fission events

Normalization

- Normalize experimental fission yield to thermal point

\[Y_f^{\text{ENDF}} = k_1 \cdot Y_f \]
Solve for $k_1 \approx 0.0253$ eV

- Use two equations for a predominantly capture resonance and predominantly fission region (thermal)

\[Y_{1,\gamma}^{\text{ENDF}} = k_2 \cdot Y_{1,\gamma} - k_3 \cdot k_1 \cdot Y_{1,f} \]
\[Y_{2,\gamma}^{\text{ENDF}} = k_2 \cdot Y_{2,\gamma} - k_3 \cdot k_1 \cdot Y_{2,f} \]

- Solve the two equations for k_2 and k_3

235U Capture & Fission Yield Data - Epithermal Measurement

- Challenges:
 - Normalization
 - False capture due to neutron scattering

 ➢ Normalize experimental fission yield to resonance

 \[
 Y_f^{ENDF} = k_1 \cdot Y_f
 \]

 Solve for \(k_1 \) @ 19.3 eV res \(\left(\frac{\Gamma_f}{\Gamma} = 0.63 \right) \)

 ➢ Use two equations for predominantly capture and fission resonances

 @ 11.7 eV res \(\left(\frac{\Gamma_r}{\Gamma} = 0.86 \right) \) @ 19.3 eV res \(\left(\frac{\Gamma_f}{\Gamma} = 0.63 \right) \)

 \[
 Y_1^{ENDF} = k_2 \cdot Y_1 - k_3 \cdot k_1 \cdot Y_1_f
 \]

 \[
 Y_2^{ENDF} = k_2 \cdot Y_2 - k_3 \cdot k_1 \cdot Y_2_f
 \]

 ➢ Solve the two equations for \(k_2 \) and \(k_3 \)

 ➢ Need 2 resonances with known parameters

Provides data to address WPEC subgroup 29 report

“Uranium-235 Capture Cross-section in the keV to MeV Energy Region”
Analysis Method – False Capture

- Neutron scattering from the sample is termed “false capture” impacts the capture-fission group **above 600 eV**
- A fraction of the scattered neutrons penetrated the 10B$_4$C liner, and subsequently was captured in the NaI(Tl), and deposited a total γ energy exceeding 2 MeV
- The false capture fraction was first studied with MCNP-Polimi simulations which are sensitive to 127I (n,γ) and then measured with a Pb scattering experiment.
- The fraction in the experimental results is likely greater due to capture of scattered neutrons in detector materials not fully modeled (ie PMTs)

![Neutron Beam from Target]

![Scattered neutron from sample]

![False Capture Fraction vs Neutron Energy [eV]]
Analysis Method – Capture Normalization
Epithermal Experiment

- The analysis method for the epithermal experiment is generally the same as for the thermal experiment except for the treatment of an additional background
- Energies used for normalization: $E_1 = 11.7$ eV and $E_2 = 19.0$ eV
- The capture yield expression now includes contributions from false capture, $f_c Y_s$

$$Y_\gamma = k_2 Y_\gamma^{exp} - k_3 k_1 Y_f^{exp} - f_c Y_s$$

- Since the scattering yield is the least known, it is replaced by the total yield, Y_t, minus the capture and fission yields

$$Y_s = Y_t - Y_\gamma - Y_f$$

$$Y_\gamma = k_2 Y_\gamma^{exp} - k_3 k_1 Y_f^{exp} - f_c (Y_t - Y_\gamma - Y_f)$$

- Solve for the capture yield:

$$Y_\gamma = \frac{k_2 Y_\gamma^{exp} - (k_3 - f_{c_i}) k_1 Y_f^{exp} - f_{c_i} Y_t}{1 - f_{c_i}}$$
235U Resonance region Data

Fission
- RPI Experiment
- SAMMY (ENDF/B-VII.1)

Capture
- RPI Experiment
- SAMMY (ENDF/B-VII.1)
Comparing 235U Fission and Capture with Evaluations

- Fission is in excellent agreement with evaluations
- Capture data has up to 8% multiple scattering that must be taken into account during the analysis
- Capture error is about 8%
- 0.4-1 keV capture data is closer to ENDF/B-7.0
- 1-2 keV ENDF/B7.0 too high JENDL 4.0 too low.
- E>1 keV data is slightly higher than evaluations but within errors.
Prompt Fission Neutron Spectra
Fission Spectrum Measurement

- Use the double TOF method
- Use a gamma tag for fission (instead of traditional fission chamber)
- Use a combination of Liquid Scintillators and Li-Glass neutron detectors

\[\text{ToF} = \frac{kL_1}{\sqrt{E_1}} + \frac{kL_2}{\sqrt{E_2}} \]
\[k \approx 72.3 \frac{\mu s \text{ eV}^{1/2}}{m} \]

\(L_{1,2} \) – flightpath distance
\(E_1, E_2 \) – incident, fission neutron energy
Gamma Tagging

• Advantages
 – Eliminated the need to construct a complicated multiplate fission chamber
 – Simpler sample preparation
 – Can use relatively large samples
 – Can increase the detected fission rate

• Disadvantages
 – False fission detection due to:
 • Random coincidence for radioactive decay
 • Neutron interactions with the gamma detector
 • Beam related:
 – Gamma capture
 – Inelastic Scattering
 – Increased background
Experimental Setup

- Neutron Detectors
 - EJ-204 Plastic Scintillator
 - 0.5” x 5”
 - 47 cm away from center of sample
 - 2 EJ-301 Liquid Scintillators
 - 3” x 5”
 - 50 cm away from center of sample

- Gamma Detectors
 - 4 BaF$_2$ detectors on loan from ORNL
 - Hexagonal detectors 2” x 5”
 - 10 cm from center of sample
 - ¼” lead shield between detectors
 - Reducing scattering between detectors

\[\text{ToF} = \frac{kL_1}{\sqrt{E_1}} + \frac{kL_2}{\sqrt{E_2}} \]

\[k \approx 72.3 \frac{\mu s \ eV^{1/2}}{m} \]

$L_{1,2}$ – flightpath distance
E_1 – incident neutron energy
E_2 – fission neutron energy
Gamma Tagging - EJ-204

- Gamma tagging method corrected for 30% detection efficiency compared to 83% detection efficiency with fission chamber
The Gaertner LINAC Center

252Cf Prompt Fission Neutron Spectrum High Energy

- High Energy spectrum taken with EJ-301 liquid scintillator
- The gamma tagging method shows good agreement to ENDF/B-VII in the energy range from 0.6 MeV to 7 MeV

<table>
<thead>
<tr>
<th>Neutron Distribution [Counts/MeV]</th>
<th>Energy [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>252Cf ENDF B-VII (Normalized)</td>
<td></td>
</tr>
<tr>
<td>RPI, 2013</td>
<td></td>
</tr>
<tr>
<td>Starostov, 1979</td>
<td></td>
</tr>
<tr>
<td>Lajtai, 1990</td>
<td></td>
</tr>
<tr>
<td>Maerten, 1990</td>
<td></td>
</tr>
</tbody>
</table>
252Cf Prompt Fission Neutron Spectrum Low Energy

- Low energy data taken with 0.5” EJ-204 plastic scintillator
- RPI data show good agreement to Lajtai, Blinov data and ENDF evaluation
- Thin plastic detector allows for measurement down to 50 keV
- Gamma tagging method accurately reproduces PFNS for 252Cf

\(^{238}\text{U}\) Prompt Fission Neutron Spectrum High Energy Preliminary Results

- Spectrum is normalized to ENDF using detector 3 at 0.9 MeV
- Spectrum is integrated over all incident time-of-flights
- Preliminary data show good agreement with current evaluations

![Neutron Distribution Graph]

- **JEFF 3.1**
- **ENDF 7.1**
- **Current Measurement**
Summary

• Neutron scattering in the energy range from 0.5-20 was measured for \(^{56}\text{Fe}\) and \(^{238}\text{U}\) at several scattering angles.
 – Data is used with MCNP as benchmark for evaluations.
 – Based on \(\chi^2\) the \(^{238}\text{U}\) data is in best agreement with the JENDL-4 evaluations.
• High energy transmission experiment of \(^{56}\text{Fe}\) provides additional data above 4 MeV
 – Uses metallic sample.
 – In good agreement with current evaluations.
• Capture and fission yields were measured for \(^{235}\text{U}\)
 – The experimental data support a lower capture cross section above 500 eV
 – The average cross section is closer to the JENDL-4 evaluation
• Prompt fission yields were measured using the gamma tag method
 – \(^{252}\text{Cf}\) measured fission neutron spectrum below 1 MeV is in good agreement with evaluations
 – Experimental results for \(^{238}\text{U}\) are preliminary.
Thank You