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The Nuclear Data Program at the 
Gaerttner LINAC Center

• Driven by a 60 MeV pulsed electron LINAC ~1012 n/s

• Neutron transmission

– Resonance region: 0.001 eV- 1000 keV, 

– High energy region: 0.4- 20 MeV

• Neutron Capture

– Resonance region: 0.01-1000 eV

– New detector array at 45m: 1 keV ~ 500 keV

• Neutron Scattering

– High energy region: 0.4 MeV- 20 MeV

• Prompt Fission neutron spectrum

• Lead Slowing Down Spectrometer 

– Fission cross section and fission fragment 
spectroscopy.

– (n,a), (n,p) and (n,g) cross sections on small 
(radioactive) samples.
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Neutron Scattering 

• Provide accurate benchmark data for 
scattering cross sections and angular 
distributions in the energy range 
from 0.5 to 20 MeV

• Can be developed to provide 
differential elastic and inelastic 
scattering cross section 
measurements

• Design a flexible system: now also 
used for fission neutron spectra 
measurements
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Methodology

• Measure the scattering yield at several angles around 
the sample.
– Use TOF to measure the neutron incident energy

– Use detectors that are insensitive to 
(capture/inelastic/background) gamma

• Compare the measurements to detailed simulations of 
the system with different cross section libraries
– Characterize the incident neutron flux

– Characterize the neutron detection efficiency

• Identify energy/angle regions where improvement is 
needed.
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TOF Scattering Yield Measurement

L1,t1,E1

L2,t2,E2

• Measure the total TOF t=t1+t2

• For all scattering events E2<E1

• In most cases the energy loss is small E1~E2

• Since t1>>t2 and E1~E2 then for presentation 
the incident neutron energy E1 is calculated 
using t and L=L1+L2
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First Order Approximation of the 
Scattering Yield
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Experimental Setup Overview

¾”
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Scattering Detection System: Experimental Setup

Low mass sample 

holder
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Scattering Detection System:
Experimental Setup

• Detector Array
– 8 EJ301 Liquid Scintillation Detectors
– 8 A/D channels
– Pulse Shape discrimination in TOF

• Data Processing System
– Data Processing Computer (SAL) –

Control Room

• Computer Controlled Power 
Supply
– Chassis - SY 3527      Board - A1733N

• Sample Holder / Changer

Neutron Beam

Detector Array

Acqiris AP240 DAQ Board

PCI Chassis Extention

CAEN Computer

Controlled Power Supply

Printer

HAL

Dell -

Precision

670

SAL

Data Analysis Computer

(Control Room)
Data Collection

Computer

(25m Station Room)
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DAQ system
• All DAQ is automated using script based software running under Windows

• Alternate between sample, graphite and open (background) measurements

• Each position is measured for about 10 min

• Fission chamber monitors are used to normalize beam intensity fluctuations.

• Detector/system gain is periodically aligned using 22Na
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Neutron Gamma Separation with
Pulse Shape Analysis

• Digitize 120 ns to get all the event-generated detector pulses

• Use pulse shape classification to discriminate gammas (~1-2% of gammas are recorded as 
neutrons)

• Developed a pulse rejection method to eliminate false neutrons.
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Flux Shape Measurement

• Use a fission chamber with 
~391 mg 235U in the sample 
position

• Use ENDF/B 7.1 fission cross 
section for 235U

• Correct for transmission of 
all materials between the 
source and sample

• Compare to a similar 
measurement using EJ301 
and SCINFUL calculated 
efficiency

• Combine the two data sets 
using fission for E< 1 MeV
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Efficiency as a Function of Energy
• Objective: 

– MCNP simulation of EJ301 
response in the sample position 
must precisely agree with the 
measurement

• Methodology:
– Use the measured flux as a source 

in MCNP simulation of the in-
beam detector response

– In MCNP set the detector 
efficiency =1 (tally only the 
neutron flux shape)

– Divide the measured response by 
the simulation results to get the 
efficiency (E) for each detector

– During the experiment periodic 
gain calibrations are done to 
minimize gain shift.
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Neutron Beam Collimation
• Characterize the collimation system

– Ensure beam diameter agrees with sample diameter of 7.62 cm

– Verify measurements and calculations agree
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• Sum all files and dead time correct.

• The experimental count rate corrected for background and

false neutrons:

Data Reduction
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MCNP Simulation Geometry
• Use ASAP (As Simple As Possible) approach

• Use array of point detector tally F5 to model the EJ301 detector

– Convolute the tally with the detector efficiency

• Include ¾” Depleted U filter in the simulation

• Include windows (Al)

• Include recent improvements of vacuum tube near the sample
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Data Analysis
• Compare the shape (as a function of TOF) between the measurements and 

simulations
• Use graphite as a reference in all measurements

– Differences between the measurement and simulation of graphite are 
considers systematic errors

• Measurements of Be, Mo and Zr
– The efficiency was derived from SCINFUL calculations
– Neutron flux shape based on a fit to in-beam measurements with EJ-301 and 

Li-Glass
– Used individual detector normalization of the simulation to the experimental 

data based on graphite measurement

• For 238U and 56Fe experiment
– Flux was derived from 235U and EJ301 in-beam measurements
– The efficiency was adjusted to match the MCNP calculations to the in-beam 

measured data 
– Use one normalization factor for all detectors (global normalization)
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238U Scattering - Forward Angles

Library c2

ENDF/B-VII.1 4.4

ENDF/B-VI.8 2.7

JENDL-4.0 2.5

JEFF-3.1 3.3

Library c2

ENDF/B-VII.1 1.8

ENDF/B-VI.8 3.7

JENDL-4.0 1.3

JEFF-3.1 2.2
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238U Scattering – Back Angles

Library c2

ENDF/B-VII.1 0.6
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Library c2
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Observations for 238U

• Differences between the evaluations are visible 
and exceed the experimental errors.

• To get better agreement the evaluations need to 
be adjusted mostly at back angles.

• Overall JENDL 4.0 has has the lowest c2
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56Fe Scattering Measurement – Results 153°

The energy resolution is 

sufficient to show some 

discrepancies in the resonance 

region (E<850 keV)
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Fe-56 Scattering Measurement – Results 153°
• Above the first inelastic state 

(E>847 keV) there are some 

differences with the evaluations

• We are exploring the possibility to 

extract double differential cross 

section data from these experiments.
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High Energy 56Fe Transmission
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56Fe Total Cross Section Measurements (NCSP) 
250m Flight Path

• Measured at 250m flight 
station with 8ns pulse 
width.

• Two sample thicknesses 
were used 0.271767 
a/barn (3.22 cm) and 
0.649742 a/barn (7.69 cm)

• Sample is 99.87% metallic 
56Fe

• Can help extend the 
resolved resonance region 
above 892 keV

• Only two other data sets 
available on EXFOR above 
900 keV (Harvey et al. and 
Cornelis et al.)

• The JEFF 3.1 evaluation 
follows the Cornelis et al. 
data
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56Fe Total Cross Section Measurements
• New data has good 

energy resolution 
but lower than 
Cornelis et al. 

• The Cornelis et al. 
data is based on an 
oxide sample 
Fe2O3 (need to 
correct for O3)

• Above 10 MeV the 
data has low errors 
and is in good 
agreement with 
both ENDF/B-VII.0 
and JEFF 3.1 
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Simultaneous Measurement of 235U 
Fission and Capture



28
Mechanical, Aerospace and Nuclear Engineering The Gaerttner LINAC Center

Measurements of 235U Capture & Fission Yields

• Thermal measurement with enriched 235U sample
• 16 Segment Multiplicity Detector with 4 Eγ groups

• Good agreement with SAMMY calculations
• Extracting Capture Yield from data with mixture of capture 

and fission events

Normalization
 Normalize experimental fission yield to thermal point

 Use two equations for a predominantly capture 
resonance and predominantly fission region (thermal)

 Solve the two equations for k2 and k3

Multiplicity ~ 1-8 Multiplicity ~ 3-11
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235U Capture & Fission Yield Data - Epithermal Measurement

• Challenges:
• Normalization
• False capture due to neutron scattering

 Normalize experimental fission yield to resonance

 Use two equations for predominantly capture and 
fission resonances

Solve the two equations for k2 and k3

► Need 2 resonances with known parameters ◄
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Analysis Method – False Capture
• Neutron scattering from the sample is termed “false capture” impacts the capture-

fission group above 600 eV

• A fraction of the scattered neutrons penetrated the 10B4C liner, and subsequently was 

captured in the NaI(Tl), and deposited a total γ energy exceeding 2 MeV

• The false capture fraction was first studied with MCNP-Polimi simulations which are 

sensitive to 127I (n,γ) and then measured with a Pb scattering experiment.

• The fraction in the experimental results is likely greater due to capture of scattered 

neutrons in detector materials not fully modeled  (ie PMTs)

Neutron Beam

from Target

Scattered 

neutron from 

sample

100 1000 10000 100000
0.00

0.05

0.10

0.15
 Pb Scattering Experiment

 MCNP-Polimi (ENDF/B-VII.0)

 MCNP-Polimi (JEFF-3.1)

 

 

F
a
ls

e
 C

a
p

tu
re

 F
ra

c
ti

o
n

Neutron Energy [eV]



31
Mechanical, Aerospace and Nuclear Engineering The Gaerttner LINAC Center

Analysis Method – Capture Normalization
Epithermal Experiment

• The analysis method for the epithermal experiment is generally the same as for the thermal 
experiment except for the treatment of an additional background

• Energies used for normalization: E1 = 11.7 eV and E2 = 19.0 eV
• The capture yield expression now includes contributions from false capture, fc Ys

• Since the scattering yield is the least known, it is replaced by the total yield, Yt, minus the 
capture and fission yields

• Solve for the capture yield:
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235U Resonance region Data
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Comparing 235U Fission and Capture with 
Evaluations

• Fission is in excellent 

agreement with 

evaluations

• Capture data has up to 8% 

multiple scattering that 

must be taken into 

account during the 

analysis

• Capture error is about 8%

• 0.4-1 keV capture data 

is closer to ENDF/B-7.0

• 1-2 keV ENDF/B7.0 too 

high JENDL 4.0 too low.

• E>1 keV data is slightly 

higher than evaluations 

but within errors.
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Prompt Fission Neutron Spectra
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Fission Spectrum Measurement
• Use the double TOF method

• Use a gamma tag for fission (instead of traditional fission chamber)

• Use a combination of Liquid Scintillators and Li-Glass neutron detectors

Electron LINAC
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Gamma Tagging
• Advantages

– Eliminated the need to construct a complicated multiplate
fission chamber

– Simpler sample preparation

– Can use relatively large samples

– Can increase the detected fission rate

• Disadvantages
– False fission detection due to:

• Random coincidence for radioactive decay

• Neutron interactions with the gamma detector

• Beam related:
– Gamma capture

– Inelastic Scattering

– Increased background

Fast neutrons scattering detector array
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Experimental Setup

Sample

Position 

EJ-301

Detectors

Gamma

Detectors

EJ-204

Detector ＊

E1

L1=30 m

E2

L2=0.5m

4 Gamma Detectors

(top view)

Neutron Detectors

Sample

• Neutron Detectors
– EJ-204 Plastic Scintillator 

• 0.5” x 5”
• 47 cm away from center of sample

– 2 EJ-301 Liquid Scintillators 
• 3” x 5”
• 50 cm away from center of sample

• Gamma Detectors
– 4 BaF2 detectors on loan from ORNL
– Hexagonal detectors 2” x 5”
– 10 cm from center of sample
– ¼” lead shield between detectors 

• Reducing scattering between detectors
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Gamma Tagging - EJ-204
• Gamma tagging method corrected for 30% detection efficiency compared

to 83% detection efficiency with fission chamber
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252Cf Prompt Fission Neutron 
Spectrum High Energy

• High Energy 

spectrum taken with 

EJ-301 liquid 

scintillator

• The gamma tagging 

method shows good 

agreement to 

ENDF/B-VII in the 

energy range from 

0.6 MeV to 7 MeV
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252Cf Prompt Fission Neutron 
Spectrum Low Energy

• Low energy data taken with 

0.5” EJ-204 plastic 

scintillator

• RPI data show good 

agreement to Lajtai, Blinov

data and ENDF evaluation

• Thin plastic detector allows 

for measurement down to 

50 keV

• Gamma tagging method 

accurately reproduces 

PFNS for 252Cf

E. Blain, A. Daskalakis, and Y. Danon, ”Measurement of Fission Neutron

Spectrum and Multiplicity using a Gamma Tag Double Time-of-Flight Setup”,

invited talk, International Conference on Nuclear Data for Science and

Technology, New York, New York, March 4-8, 2013.
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238U Prompt Fission Neutron Spectrum High Energy
Preliminary Results

• Spectrum is normalized to 

ENDF using detector 3 at 

0.9 MeV 

• Spectrum is integrated 

over all incident time-of-

flights

• Preliminary data show 

good agreement with 

current evaluations

0.5 1 8
10

-9

10
-8

10
-7

10
-6

 

 

N
e

u
tr

o
n
 D

is
tr

ib
u
ti
o

n
 [

C
o

u
n

ts
/M

e
V

]

Energy [MeV]

 JEFF 3.1

 ENDF 7.1

 Current Measurement



42
Mechanical, Aerospace and Nuclear Engineering The Gaerttner LINAC Center

Summary
• Neutron scattering in the energy range from 0.5-20 was measured for 56Fe and 

238U at several scattering angles.
– Data is used with MCNP as benchmark for evaluations.
– Based on c2 the 238U data is in best agreement with the JENDL-4 evaluations.

• High energy transmission experiment of 56Fe provides additional data above 4 
MeV
– Uses metallic sample.
– In good agreement with current evaluations.

• Capture and fission yields were measured for 235U
– The experimental data support a lower capture cross section above 500 eV
– The average cross section is closer to the JENDL-4 evaluation

• Prompt fission yields were measured using the gamma tag 
method
– 252Cf measured fission neutron spectrum below 1 MeV is in good agreement with 

evaluations
– Experimental results for 238U are preliminary.
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Thank You


