Critical Benchmark Results for a Modified ${ }^{16}$ O Evaluation

Paul K. Romano, Cecil R. Lubitz, Timothy H. Trumbull Bechtel Marine Propulsion Corporation
Knolls Atomic Power Laboratory
NEMEA-7 International Collaboration on Nuclear Data
5-8 November 2013, Geel, Belgium

Background

- Compelling evidence suggests ${ }^{16} \mathrm{O}$ elastic scattering cross section in current evaluations is 3% too high
- What would the effect of reducing scattering by 3% be on eigenvalues of critical benchmarks?

Benchmarks

- HEU-SOL-THERM-001 - Rocky Flats, unreflected $\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2}$
- HEU-SOL-THERM-009 - ORNL, water-reflected $\mathrm{UO}_{2} \mathrm{~F}_{2}$
- HEU-SOL-THERM-010 - ORNL, water-reflected $\mathrm{UO}_{2} \mathrm{~F}_{2}$
- HEU-SOL-THERM-011 - ORNL, water-reflected $\mathrm{UO}_{2} \mathrm{~F}_{2}$
- HEU-SOL-THERM-012 - ORNL, water-reflected $\mathrm{UO}_{2} \mathrm{~F}_{2}$
- HEU-SOL-THERM-013 - ORNL, unreflected $\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2}$
- HEU-SOL-THERM-032 - ORNL, unreflected $\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2}$
- HEU-SOL-THERM-042 - ORNL, unreflected $\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2}$
- HEU-SOL-THERM-043 - ORNL, unreflected $\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2}$

Procedure

1. Start with ${ }^{16} \mathrm{O}$ from Sayer et al. (2000) R-matrix evaluation

- Scattering is nearly 3.15\% above high precision measurements
- Has resonance parameters unlike ENDF/B-VII
- Constant cross section at low energy

2. Reconstruct with NJOY 2012 or PREPRO
3. Process with NDEX to create ND_LIBRARY used in MC21
4. Reduce elastic scattering in ND_LIBRARY by 3.15% and adjust total accordingly

Benchmark Results

Angular Distributions

- Increase in leakage due to lower elastic scattering could be offset by changes to angular distributions
- What change in the first-order Legendre moments would eliminate trend with leakage?

Procedure

1. Three versions of Sayer et al. (2000) ENDF file

- Original
- First-order Legendre coefficient on MF=4, MT=2 increased by 2\%
- First-order Legendre coefficient on MF=4, MT=2 decreased by 2\%

2. Process with NJOY and NDEX to produce ND_LIBRARY file used in MC21
3. Reduce elastic scattering by 3.15%

Sensitivity Results

Implications of Sensitivity

- Can determine change in first-order coefficient necessary to eliminate trend:

$$
k\left(L_{1}, a_{1}\right)+\frac{k\left(L_{1}, a_{1}^{\prime}\right)-k\left(L_{1}, a_{1}\right)}{a_{1}^{\prime}-a_{1}} \Delta a_{1}=k\left(L_{2}, a_{1}\right)+\frac{k\left(L_{2}, a_{1}^{\prime}\right)-k\left(L_{2}, a_{1}\right)}{a_{1}^{\prime}-a_{1}} \Delta a_{1}
$$

- Solving for $\Delta \mathrm{a}_{1}$, we obtain -30\%
- Change of this magnitude would push angular distributions outside range of uncertainty on measured distributions

Trend with ${ }^{16} \mathrm{O}$ absorption

- Appears to be increasing trend with ${ }^{16} \mathrm{O}$ absorption
- Cannot be eliminated by modifying (n, α) cross section
- Do not yet understand significance

Heavy water benchmarks

- Also looked briefly at HEU-SOL-THERM-004
- Los Alamos, $\mathrm{D}_{2} \mathrm{O}$-reflected $\mathrm{UO}_{2} \mathrm{~F}_{2}$ solution
- Observed 400-500 pcm change in reactivity from ENDF/B-VII. 1 to modified Sayer

Conclusions

- For HST benchmarks, dominant effect of reducing scattering is increased leakage and therefore lower eigenvalue C/E ratios
- Results in trend with fast leakage
- Trend cannot be eliminated just by simple changes to Legendre polynomial coefficients
- Increasing trend in eigenvalue C / E with ${ }^{16} \mathrm{O}$ absorption not yet understood

Ongoing Work

- Would -30% change in a_{1} actually eliminate trend?
- Look at other benchmarks
- Pin-cell problems (LEU-COMP-THERM)
- More heavy water benchmarks
- HEU-SOL-THERM-020
- LEU-MET-THERM-015

Questions and Discussion

