CIELO: Goals and Timeline

M.B. Chadwick, A.C. Kahler X-CP Computational Physics Division, LANL Overview

The challenges facing a broad collaboration
Some integral data validation results

(^{235,8}U, ²³⁹Pu, ⁵⁶Fe, ¹⁶O, ¹H *initially*)

Time-line

May 2013: CIELO WPEC Subgroup initiated

Teams identified

Nov 2013: NEMEA7-CIELO: Main collaboration kick-off

- Refine scope of work, collaborators who will work on tasks
- Will result in detailed work plans, time line goals, for each nucleus

Next 2.5 Years:

- Various collaboration meetings, continual email collaborative exchanges
- engagement with validation data testers continually
- Incorporate new IAEA standards results (fission, capture, scattering, ...)
- Explore interdependencies on criticality from the 6 CIELO nuclides

May 2016:

- Document conclusions from CIELO collaborations in WPEC report (& NDS paper?)
- Create formatted files that embody CIELO's initial conclusions

CIELO Expedites Evaluated Data Advances ~100 People Already Engaged from Across World

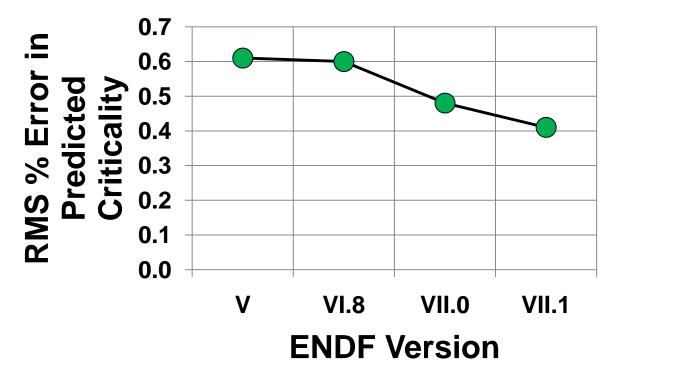
- ✓ Pilot Project: ¹H, ¹⁶O, ⁵⁶Fe ^{235,8}U and ²³⁹Pu
- Identify discrepancies see our ND2013 Proceedings paper
- Establish teams of specialists
- Resolve/document discrepancies and create new CIELO files: Insights come from experiment, theory, and benchmark experiments
- Goal: best physically-justifiable cross sections, while maintaining good integral performance (k-eff criticality, reaction rates, *etc*)

It's an opportunity to make substantial advances, with key support from NEA (Emmeric Dupont ...) and IAEA (Robin Forrest ...)

CIELO: Rationale

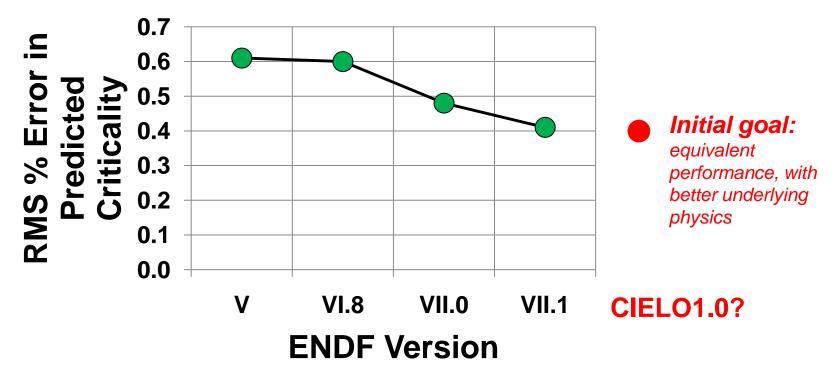
- Nuclear data are physical constants there's only one correct answer!
 And they are used as a trusted repository for scientific data
 - Existing ENDF, JENDL, JEFF, have reached a level of maturity enabling us to contemplate this next step *they're already converging!*

Quality: advances will benefit from collaboration of world's experts


- Evaluations are extremely complex, with very broad scope
- We are relying more on complementary expertises
- Computational & sens./covariance advances can expedite advances
- We have experts in place to do this (including key retirees)
- Build on steps already taken through international collaborations
 - IAEA/WPEC Standards ... IAEA CRPs, NEA WPEC Working Groups

Progress in Modeling Criticality in ENDF

"Mosteller" suite of 119 critical assemblies that we track over time (MCNP6 calculations)



Diminishing returns: it is increasingly difficult to improve our overall performance using the present approaches

Kiedrowski

Progress in Modeling Criticality in ENDF

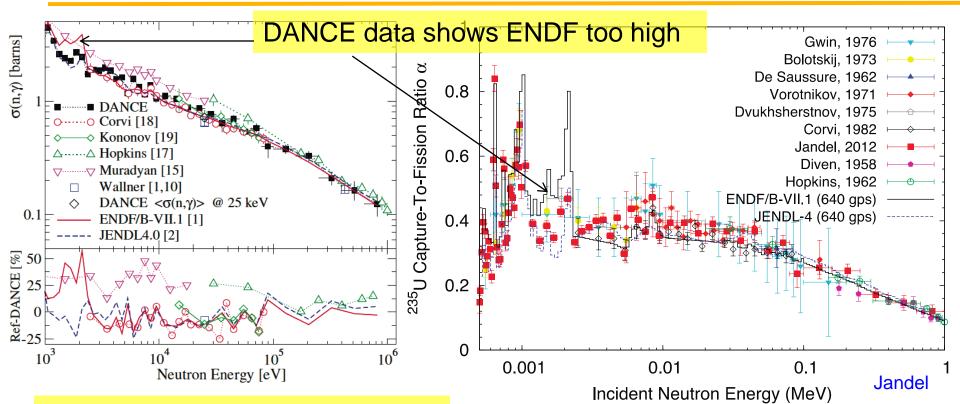
"Mosteller" suite of 119 critical assemblies that we track over time (MCNP6 calculations)

Diminishing returns: it is increasingly difficult to improve our overall performance using the present approaches

In Case You Didn't Think We Have Lots of Work

4	A	В	С	D
	ELO: Summar	ry of tasks to address:		
2				
3 A	ctinides	: 239Pu, 235U, and 238U - specific issues for each nuclide are note	d	
4				
	est Region	(keVs and above to 20 MeV) - fission listed separately		
6	ist Region	(keys and above to 20 Mey) - histor histed separately		
	view Overall (Goals, as embodied in this document and in LAUR CIELO document		
8	view Overall	doals, as embodied in this document and in EACK CIECO document		
	electic and els	astic scattering - below a few MeV (eg 7)		
0		Review existing discrepancies between evaluations		
1		Collect all available experimental data		
2		Review various theoretical approaches, as embodied in codes (including HF, Coupled Channels, KKM,)		
3		Discuss and review optical model options		
4		238U: dispersive coupled-channels OM developed at IAEA		
5		Seek consensus on best evaluated reprentation of data		
6		238U: 238U Elastic and inelastic scattering data from RPI. Quasi differential available (mainly inelastic) from RPI from fi	om 0.5 MeV ur	to 20 MeV - E
7		235U: New (n,xng) data to be published in PRC by Kerveno et al. (IPHC, Strasbourg (F)) could be useful to model inelast		
8		Understand implications from integral data testing on changes in inelastic scattering - especially k-eff and reaction rates		
9		Assess covariances and implement in ENDF format	(spectral male	
0		Create ENDF formatted files		
	elastic and ela	astic scattering - 7-20 MeV		
2		Review existing discrepancies between evaluations, data, and models (including preequilibrium)		
3		Collect all available experimental data - including Kammerdiener's data and Baba's (U8) data		
4		Review various theoretical approaches, as embodied in codes (including preeq, HF, Coupled Channels, KKM, PFNS backg	round)	
5		Discuss and review optical model options	round,,	
6		Seek consensus on best evaluated reprentation of data - including possible continued use of pseudostates		
7		Understand implications from integral data testing on changes in inelastic scattering -especially 14 MeV pulsed spheres/	transmission d	ata
8		Assess covariances and implement in ENDF format		
9		Create ENDF formatted files		
	utron Capture			
1		239Pu: Review discrepancies between evaluations, which exceed 10% at the higher energies		
2		235U: Review discrepancies between evaluations, which exceed 25% near 1 KeV (Japan'shigher result) and 10% at the	higher energie	9
3		238U: Consider adopting 238U capture from standards - ENDF/B-VII used this, but with some small differences. Study		
4		238U: Monitor Standards results for any changes, based on new measurements from DANCE, nTOF, Geel		, coto testing e
5		239Pu: Review data (very few measurements, especially above 100 keV there is just the LANL Hopkins data); See if DA	NCE data is ava	allable in time
6		235U: Review new DANCE data and RPI data, that appear to corroborate JENDL changes near 1 keV, but point to higher		
7		Review guidance from integral PROFIL data (suggests PU9 and (maybe) U5 from ENDF should be higher), and Wallner A		
8		Assess model calculations predictions (consisent with above inelastic scattering HF/CC/OM calculations)		
9		Seek consensus on best evaluated reprentation of data		
0		Understand implications from integral data testing on changes in capture - especially k-eff and reaction rates (spectral i	ndices for 85/5	f etc)
1		Assess covariances and implement in ENDF format		
2		Create ENDF formatted files		
3				
4 n2r	n			
5		Discuss data, including discrepancies in rise from threshold, and differences near 14 MeV		
6		Review existing evaluations (including "GEANIE evaluation" for 239Pu), data , and calculation predictions		
7		235U: New (n,xng) data to be published in PRC by Kerveno et al. (IPHC, Strasbourg (F)) could be useful to model n2n s	cattering, see i	orelim results in
8		239Pu: Carefully note insights on n2n making 238Pu from LANL, and discuss contradictory feedback from PROFIL		
9		Validate any changes against n,2n reaction rates in critical assemblies, eg Fig 57 in NDS112,(2012) ENDF		
0		Create ENDF file and covariances		

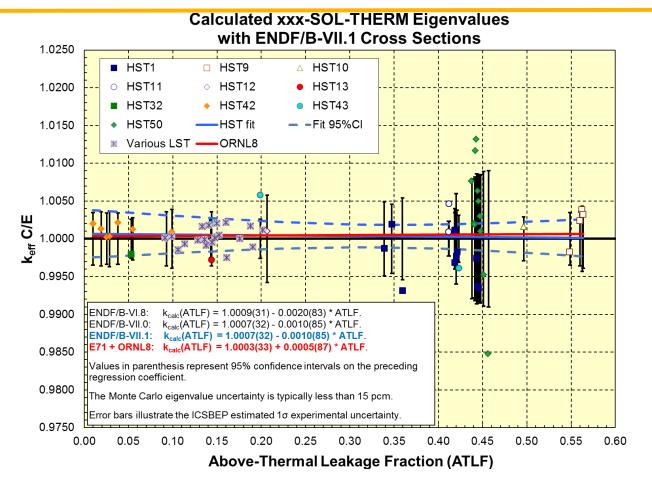
71	Fission (all	energies), cross sections, nubar and spectra for n,g		
72				
73	Review Overall	Goals, as embodied in this document and in LAUR CIELO document		
	Fission Cross Se			
75				
76		Seek consensus that we adopt the fission cross section standard from the IAEA group		
77		Assess implications of adopting standard fission cross section on integral testing		
78		If IAEA standards team updates their value, use it; this would include any recent/forthcoming fission measurements, eg	nTOF, RPI, TP	c
79		Modeling of fission would occur as part of the above inelastic/capture/n2n activities, but seek consensus that we do not		
80				
81		238U:Subthreshold fission for 238U - discrepacies between different evaluations. Lead spectrometer measurements nea	ar 70 keV sugg	est a p
82	prompt nubar			
83		Review existing evaluations and experimental data, & review various theoretical approaches; 238U low energy interp fix	needed in ENI	DF
84		Seek to use an "unadjusted" nbar in a final evaluation, avoiding the ENDF "tweal" near an MeV that was adopted to bett		
85		Study Koning-Rochman nubar near thermal, from their optimization search (but it's 3 SD below the standards constants	value)	
86		Develop a new evaluation based on a covariance analysis of the data		
87		Understand implications from integral data testing on changes in nubar - especially k-eff		
88		Create ENDF formatted files, including covariances		
89				
90	PFNS	Review work of IAEA CRP on PFNS		
91		Aim to adopt the CRP's recommendation		
92		Seek consensus on using LANL high-accuracy NUEX Pu9 and U5 data, as published in Dec NDS2011 to help define high-	energy spectru	im
93		Use new PFNS measurements, especially below MeV, coming from LANSCE/Chi-nu in the coming years		
94		Use guidance on high energy tail of spectrum from dosimetry reactions (new IAEA IRDFF CRP), eg from LANL crits, Russ	sian fast reacto	r, & CE
95		As part of IAEA CRP, advance our theoretical models, and use incorporate other data (new and existing)		
96		Understand implications from integral data testing on changes in inelastic scattering - especially k-eff and reaction rates	in assemblies	
97		Create ENDF formatted files, including covariances		
98				
99				
100	PFGS			
101		Review existing evaluations and experimental data, and various theoretical approaches		
102		Represent fission gammas separately at all energies, including above 1.09 MeV for U5 and Pu9 (an ENDF drawback), & o	use new data a	vailabl
103		Update PFGS spectra to use modern measurements from DANCE, as well as multiplicity distribution if possible		
104		Create ENDF formatted files, including covariances		
105				
106	Delayed data			
107		Review differences in present evaluatiosn		
108		Develop plan for work needed		
109				
110	Energy Release			
111		Compare energy release data in evaluations, for prompt n, g, fission fragments; and delayed energy release		
112		Update as necessary - eg ~ MeV level changes are impled for 239Pu from Jandel's DANCE data for 239Pu (but 235U loo	ks good)	
113		Consider updating energy release incident-energy-depenence based on Lestone's work		
114				


110					
116	Integral Da	ta Testing and Validation			
117					
118	Review Overall	Goals, as embodied in this document and in LAUR CIELO document			
119		Define suite of critical assembly, reactor, transmission, etc experiments to use in validation assessments, and observable	es (k-eff, rates,	spectral inc	dices)
120		238U: selection of 12 ICSBEP criticality benchmarks sensitive to elastic scattering is available from JSI/IAEA (Trkov, Cap	ote)		
121		Seek to ensure good performance in data testing, which includes:			
122		Fast, intermediate, and thermal assemblies, k-eff			
123		239Pu: Aim for (Partial?) improvement of longstanding overprediction of thermal Pu solutions			
124		Modeling spectral indices well in various systems (incl fast), 8f/5f, 9f,5f, 237np-f/5f, 233u-f/5f etc, see Table XXXVIII in	VII.1 NDS 201	1 paper	
125		Modeling of post irradiation experiments (PIE) such as PROFIL (CEA) and MANTRA (INL)			
126		Modeling MOX experiments for mock up of LWR, eg in EOLE, Cadarache			
127		See if PFNS improvements give improved n2n detector responses in fast crits, eg through a softer PFNS spec aove 10 M	eV		
128		nubar validation using multiplication subcritical measurements			
129		LLNL pulsed spheres			
130		Can we obtain improved preductions of intermediate assemblies, eg ZPR at Argonne			
131		Aim to maintain good prediction of crits, including new as-built high-resolution 3D MCNP Jezebel model?			
132		Use sensitivity metodologies for assessing changes/improvements by reaction and energy range			
133					
134					
135					
136					
127					

- Capture changes in resonance region, based on new LANL, RPI, CERN data (& insights from Japanese data testing)
- New PFNS results coming (IAEA CRP etc)
- Inelastic scattering discrepancies between evaluations
- Use of new IAEA Standards

Major Advance (2): ²³⁵U Capture: It appears the Japanese were right near 1 keV

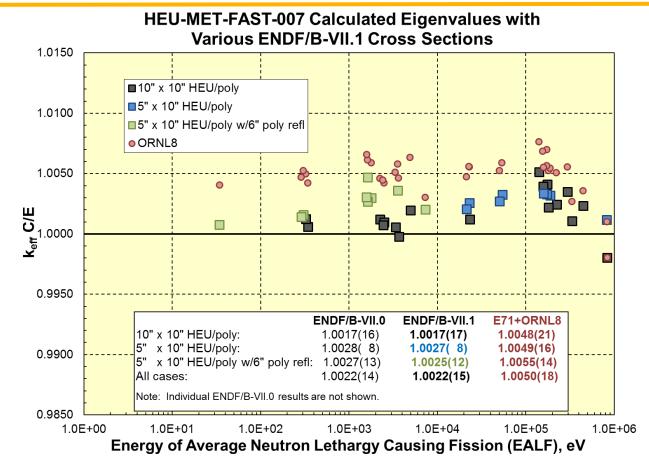
Future evaluations will include Los Alamos & RPI, n_TOF data


But Wallner AMS 25 keV has ENDF high by 5% (+/- 6%); 423 keV ENDF high by 8% +/- 8%; PROFIL fast reactor has ENDF low by 3-5%

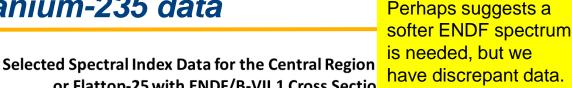
HST Benchmarks - LANL testing of prelim Res file

 Regression fit to HST benchmarks versus ATLF has been excellent since ENDF/B-VI.3 (Lubitz).

 This excellent fit is retained with the latest (ORNL8) ²³⁵U resolved resonance file.



HMF7 (HEU + CH₂) : LANL testing of prelim Res file


 HEU + poly system tests xs data over several orders of magnitude.

E70 & E71
 results are near
 unity at either
 energy extreme
 but are biased
 high in the
 intermediate
 energy range.

 This bias is worsened with the latest ORNL8
 ²³⁵U evaluated file.

Reaction Rates in Fast Critical Assemblies Provide Integral Test of Prompt Fission Neutron Spectrum & (n,2n) Cross Sections - Uranium-235 data Perhaps suggests a

or Flattop-25 with ENDF/B-VII.1 Cross Sectio 235 1.50 XNEUX-U 239Pu(n,f) O 239Pu(n,f) See also Casoli O237Np(n,f) • 238U(n,f) O238U(n,f) 238U(n,2n) 203Tl(n,2n) ND2013 talk & Bauge 238U(n,2n) 197Au(n,2n) 169Tm(n,2n) 191lr(n,2n) 2012 EPJ paper 204Pb(n,2n) **75As(n,2n)** 90Zr(n,2n) ◆32S(n,p) Δ51V(n,α) 📕 C-NR (8U(n,2n)) With NUEX 1.25 New IAFA CRP -Calculated / Measured Simakov data added 1.00 (Lestone) ф 0.75 "Closed" data points are from Godiva, "open" data points are from Flattop-25

5.0

7.5

Average Reaction Energy, MeV

0.50

0.0

2.5

Similar analysis for plutonium systems – see our ND2013 proceedings paper

12.5

15.0

10.0

More Data Testing on Preliminary 235U ORNL Res Rile

	GODIVA (HEU-MET-FAST-001)	
Cross Section Set	Benchmark keff	k _{calc}
ENDF/B-VII.1		0.99983(3)
E71 + ORNL8	1.000(1)	0.99985(2)
J4 + ORNL8	1.000(1)	0.99757(2)
CEA + ORNL8		0.99957(2)
	Flattop-25 (HEU-MET-FAST-028)	
ENDF/B-VII.1		1.00285(2)
JENDL-4.0		0.99779(9)
E71 + ORNL8	1.0000(16)	1.00300(13)
J4 + ORNL8	1 [0.99899(13)
CEA + ORNL8		1.00040(13)
	Big-10 (IMF7, detailed model)	
ENDF/B-VII.1		1.00443(2)
JENDL-4.0] [0.99710(7)
E71 + ORNL8	1.0045(7)	1.00471(8)
J4 + ORNL8] [0.99764(11)
CEA + ORNL8	1 [0.99901(11)

keek Summary for Various Benchmarks and Cross Section Data Sets

More Data Testing on Preliminary 235U ORNL Res Rile

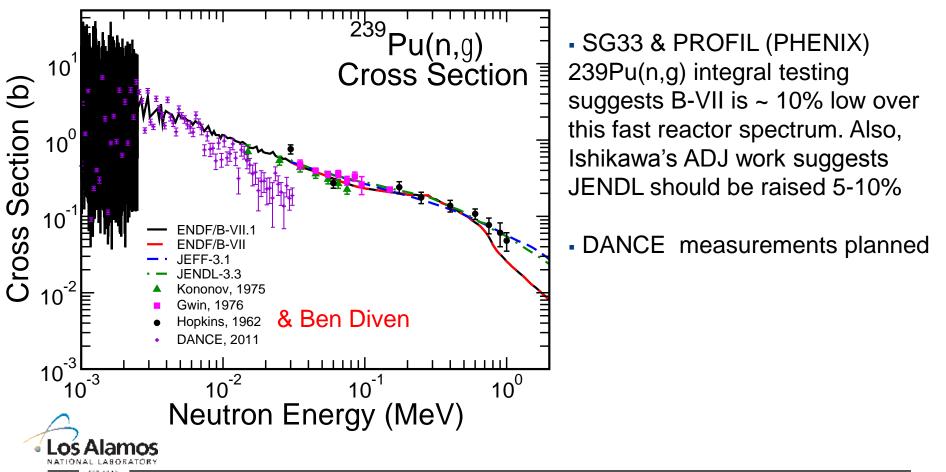
	HMI6.1	HMF6.2	HMI6.3	HMF72.3	HMI6.4	HMF72.1	HMF73
Benchmark keff	0.9977(8)	1.0001(8)	1.0015(9)	1.0016(69)	1.0016(8)	0.9991(24)	1.0004(16)
endf/b-vii.1 galf	4.93 keV	10.1 keV	23.5 keV	40.8 keV	79.8 keV	223 keV	416 keV
				k _{calc}			
ENDF/B-VII.1	0.99293(2)	0.99690(2)	1.00076(2)	1.01236(2)	1.00730(2)	1.00852(1)	1.00807(2)
ENDF/B-VII.1 + e5 matCu	0.99264(2)	0.99723(2)	1.00168(2)	1.00762(10)	1.00767(2)		0.99663(2)
ENDF/B-VII.1 + mit/ornl 63,65Cu	0.99304(15)	0.99709(15)	1.00086(15)	1.01254(10)	1.00791(15)		1.00720(14)
JENDL-4.0	0.99810(11)	1.00197(11)	1.00428(11)		1.00569(10)		1.00267(9)
E71 + ORNL8	1.00188(2)	1.00616(2)	1.00929(2)	1.01744(10)	1.01196(2)	1.00921(9)	1.00809(1)
J4 + ORNL8	0.99629(2)	0.99987(2)	1.00226(2)		1.00451(2)		1.00276(2)
CEA + ORNL8	0.99578(2)	0.99922(2)	1.00149(2)		1.00390(2)		1.00361(1)

JENDL-4.0 is bold only; remaining cross sections are endf/b-vii.1.

J4+ORNL8 is the ²³⁵U data set; remaining cross sections are endf/b-vii.1.

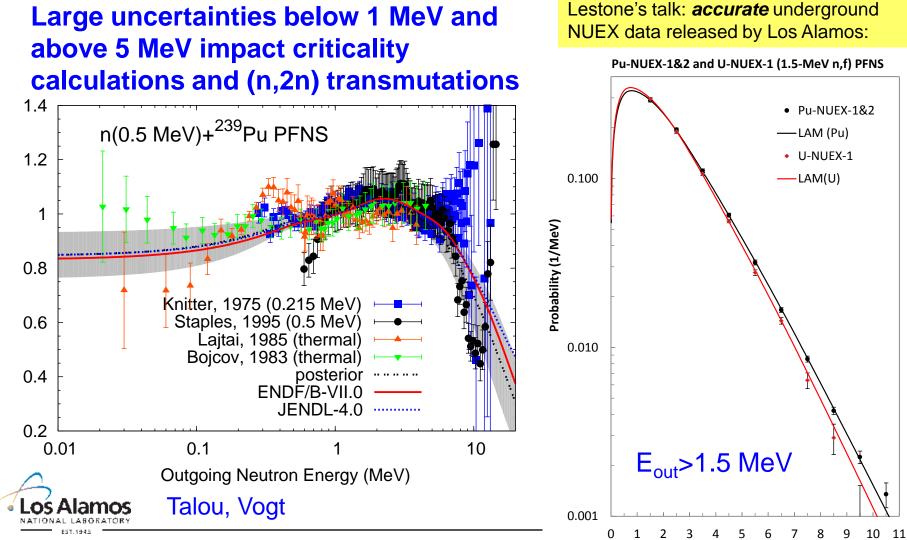
kees values with a ~2 pcm uncertainty were run for 2 billion histories and include detailed multigroup tallies.

HMI6 has varying amounts of interstitial carbon; HMF72.1 has interstitial carbon steel (Fe); HMF72.3 has interstitial carbon steel (Fe) and polyethylene; HMF73 is HEU only ... all assemblies are surrounded by a thick copper reflector (i.e., HMI6, HMF72 and HMF73 are different flavors of ZEUS).


4

- Build on the excellent WPEC subgroup 34 work from CEA & ORNL
- Capture discrepancies. We're waiting for new DANE data
- New PFNS results coming (IAEA CRP etc)
- Inelastic scattering discrepancies between evaluations
- Use of new IAEA Standards

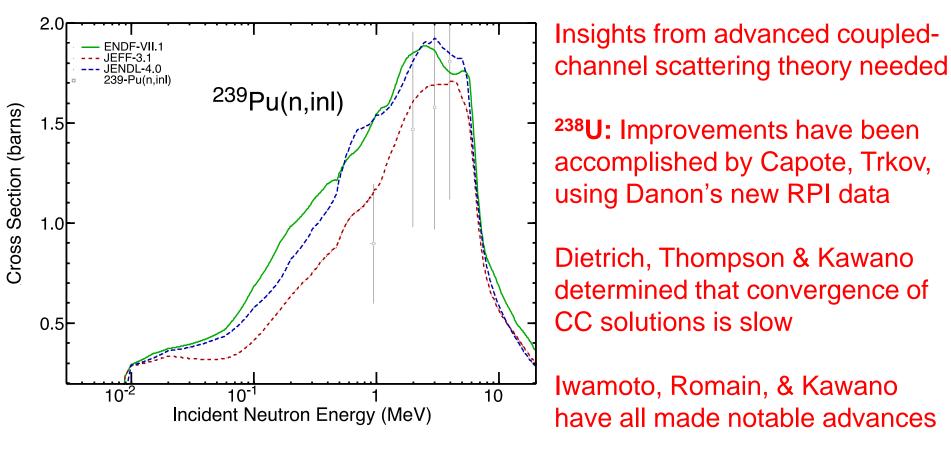
Plutonium Capture: Improvements Are Needed



Operated by Los Alamos National Security, LLC for NNSA

Existing uncertainties >15%

Determining the Prompt Fission Neutron Spectrum (Chi): One of Our Highest Priorities & an IAEA CRP

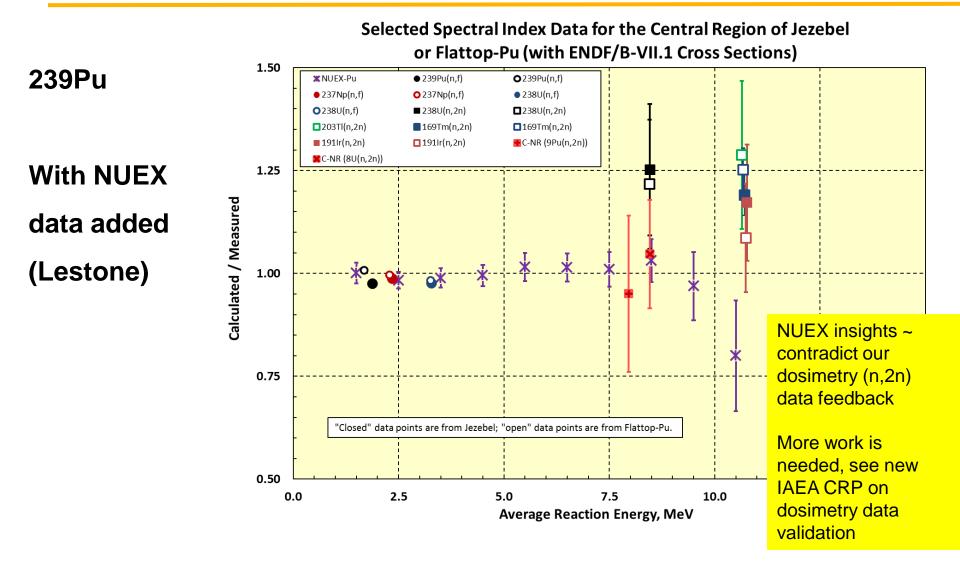


Operated by Los Alamos National Security, LLC for NNSA

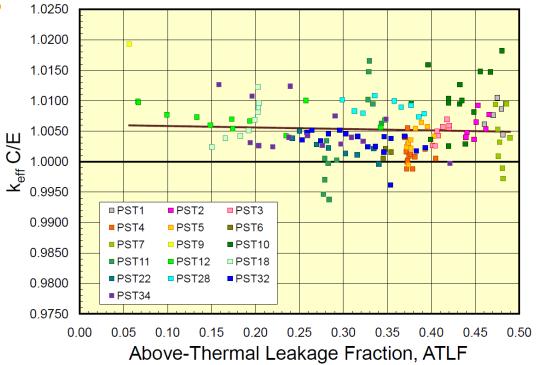
Ratio to Maxwellian (T=1.42 MeV)

E_n (MeV)

Major Advance (4): Actinide Elastic & Inelastic Scattering: Large Discrepancies are Starting to be Resolved



Operated by Los Alamos National Security, LLC for NNSA


Reaction Rates in Fast Critical Assemblies Provide Integral Test of Prompt Fission Neutron Spectrum & (n,2n) Cross Sections - *Plutonium-239 PFNS Data*

Pu-SOL-THERM Benchmarks – I. Prelim LANL testing of

new Subgroup 34 resonance results

- A ~500 pcm bias in calculated PST reactivity is a longstanding issue.
- WPEC Sub-Group 34 was tasked with defining a new (better?) set of resolved resonance parameters for ²³⁹Pu in an attempt to resolve this issue.
- Can define a sub-set of these 150 benchmarks to test revised data files.

•Consider benchmark attributes such as (i) ATLF; (ii) ²³⁹Pu atom-% in Pu; (iii) Above-Thermal Fission Fraction (ATFF); (iv) H/Pu number density (or gPu per liter) to define this sub-set.

Pu-SOL-THERM Benchmarks – II. Prelim LANL testing of new Subgroup 34 resonance results

- A set of seven Pu-SOL-THERM benchmarks have been extracted from the larger set.
 - PST1.4 & PST12.13 span the ATLF space;
 - PST12.10 & PST34.15 span the ATFF space;
 - PST4.1 & PST18.6 span the ²³⁹Pu atom percent space;
 - PST12.10 & PST34.4 span the g Pu per liter space.
- All benchmark experiments are performed in simple geometry
 - PST1.4 & PST4.1 are a water-reflected spheres;
 - PST18.6, PST34.4 & PST34.15 are water-reflected cylinders;
 - PST12.10 & PST12.13 are a water-reflected slabs;

Pu-SOL-THERM Benchmarks – III. Prelim LANL testing of new Subgroup 34 resonance results

•The E71 1.00576

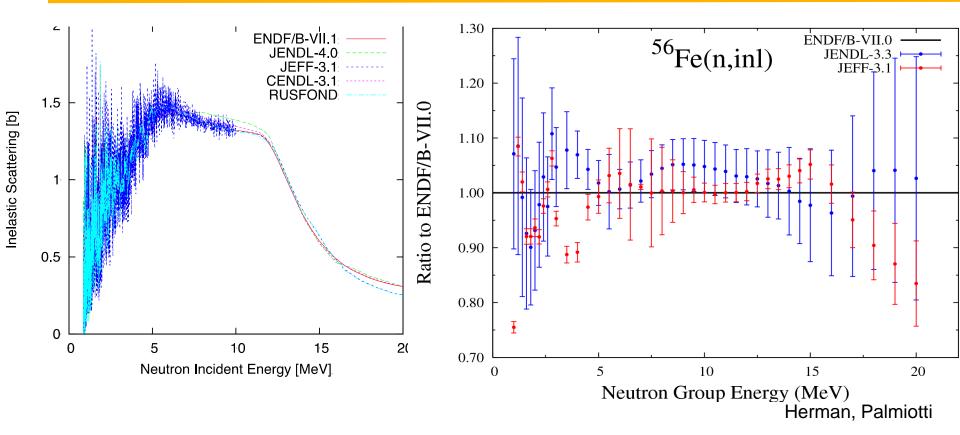
k_{calc} average demonstrates that the 7 benchmark subset reflects the larger population.

•Data revisions in the "Leal7a" ²³⁹Pu evaluated file have eliminated ~50% of the longstanding k_{calc} bias.

Assembly	ENDF/B-VII.1	JEFF-3.1.2 ^(b)	JENDL-4.0 ^(b)	Leal7a ^(c) + e71	Leal7a (RR, nu, pfns only) +
					e71
PST1.4	1.00448	1.00127	1.00588	1.00199	1.00202
PST4.1	1.00383	0.99907	1.00482	1.00044	1.00044
PST9	1.01939	1.01367	1.02510	1.01543	1.01546
PST12.10	1.00412	0.99973	1.00498	1.00083	1.00080
PST12.13	1.00955	1.00468	1.01069	1.00611	1.00620
PST18.6	1.00472	1.00153	1.00557	1.00202	1.00208
PST34.4	1.00258	0.99999	1.00417	0.99922	0.99937
PST34.15	0.99742	0.99563	0.99844	0.99679	0.99707
Average	1.00576	1.00195	1.00746	1.00285	1.00293

Calculated Eigenvalues^(a) for a Selection of PST Assemblies

Using Various ²³⁹Pu Cross Sections


a) MCNP calculations are for 250M histories; stochastic uncertainty is ~5 pcm.

b) JEFF-3.1.2 and JENDL-4.0²³⁹Pu only; remaining nuclides are ENDF/B-VII.1

c) "LEAL7a" evaluation provides revised resolved resonance parameters coupled to a joint ORNL/CEA evaluated ²³⁹Pu file; the "LEAL7a (RR,nu,pfns)" file couples just these data to the existing ENDF/B-VII.1 ²³⁹Pu file.

2		
3	56Fe	
4		
5		
6		
7	General	
8		Review differences in evaluations. In ENDF/B-VII.1 RR extend up to 850 keV, but pointwise fluctuations extend up to almost 10 MeV.
9		Get insights from previous evaluators on tasks to work on. For example, Trkov, Koning, Vonach, Tagesen were involved in the last European Jeff
10		Optical model and other key modeling parameters
11		
12	Fast Region	
12	Tast Region	
	To all able and all	
14	Inelastic and ela	
15 16		Review new data,: RPI has high-res transmission up to 2 MeV, and scattering data ("quasi differential data"), that needs an MCNP calc to compa
10		Deview new data Arian Diaman (Casi) has instantia data (actually, common and ution) has measured this year from 000 (a)/ to 5 Ma)/
17		Review new data: Arjan Plompen (Geel) has inelastic data (actually, gamma-production) too measured this year, from 800 keV to 5 MeV.
		Review new data: Schillebeeckx and Trkov's postdoc have made some new measurements, and reviewed existing measurements
19 20		Review new data: Ron Nelson (LANL) has gamma-production data for iron. Review new data: The Grimes et al. Ohio work should be looked at too – it is suggesting a big change for nonelastic, but that our total cross sec
21		IAEA coupled-channel OM work going on for iron.
22		Pronyaev – also doing work on inelastic gamma production. At one point this was being considered as a standard (now more likely to use Ti).
22		Pronyaev – also doing work on inelastic gamma production. At one point this was being considered as a standard (now more likely to use 11).
24	Charged-particl	
25	chargeu-partici	Review data, evaluations, and model predictions for (n,alpha) etc
26		Data above 20 MeV may be needed too, eg for fusion applications, using new gas-production data from Haight.
27		bata above zo nev may be needed too, eg for fasion applications, asing new gas production data from haight.
28	Activation xs	
29		Review/Include activation data needed for fission/fusion
30		
31	DPA	Take advantage of insights from new IAEA CRP on damage and DPA
32	2111	
33	Deconance	Region, Resolved and UnResolved Parameters (hundred of keVs and below)
34	Resonance	Region, Resolved and OnResolved Parameters (numbered of Revs and Delow)
35	RRR & UR	Review latest evaluation from Luiz Leal
36	KKK & UK	Review latest evaluation from Luiz Leal
37	Integral validati	
38	Integral validad	Define suite of integral tests - critical assemblies, transmission/shielding, reactor experiments, etc
39		17 benchmarks with iron as shielding material (+8 more with stainless steel) are available in the SINBAD database
40		Compile feedback from recent testing - eg SG33, fast reactor COMARA experience, etc, Steven VDM's NDS 2012 benchmarking paper (which no
40		Andrej Trkov has shielding benchmarks that are relevant too. The euracos benchmark for sinbad.
42		Pay attention of Fe-reflected fast critical benchmarks (+ thermal bench from CEA, e.g. PERLE experiments in EOLE)
43		Use ZPR3-54, ZPR9-34, ZPR6-10 and possibly CIRANO with reaction rate distributions
44		Use sensitivity metodologies for assessing changes/improvements by reaction and energy range
45		ose sensitivity metodologies for assessing changes/improvements by reaction and energy range
46		

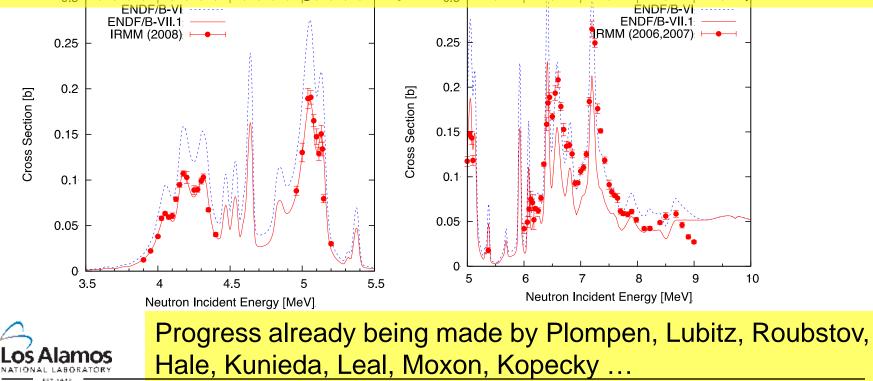
⁵⁶Fe: Advances Needed in Inelastic Scattering

New measurements (IRMM) & SAMMY analyses in resonance region; new Hauser-Feshbach analyses at higher energies

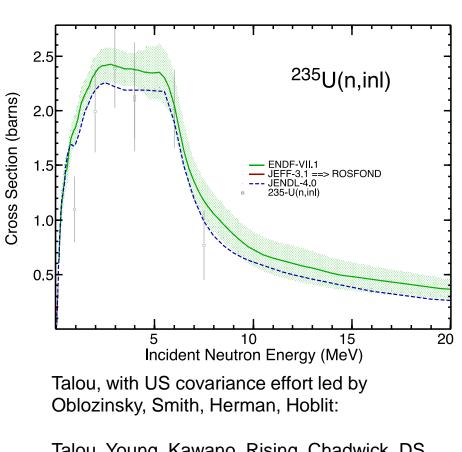
Los Alamos

Cecil Lubitz:

"After several "preliminary" months on CIELO it's clear that we have bitten off a big chunk. Get ready to chew."


2			4									
3	160											
4												
5												
6												
_	General											
8		Intercompare	evaluations, an	d identify goals	for a new eval	uation						
9												
10		JENDL is a new	v work (though	adopts ENDF n	,a); ENDF (JEF	F uses ENDF) is	a hydrid of KA	APL work < 3.2	MeV, LANL (Hal	e et al) > 3.2 M	leV - assess va	lue of
11		The 2005 ORN	L work generat	ed a resonance	analysis for 16	60, full R-matrix	k. Included ang	ular distribution	s, n,alpha, and	it has never be	een tested. Nee	eded L
12												
13												
4												
	Total, Elastic a	nd inelastic scatt		and D matula	and the later and da	fla anth famma						_
16 17		compare exist	ing evaluations	and K-matrix a	analysis, and de	efie path forwar	u l					
18		At low energie	e perges wheth	ar evaluations	of electic costs	ering indeed as	ed to be lower	ed by ~3%, as p	wonoced by Pla	moon Lubita	Roubteou etc	
19		At low energies	s, assess when	ler evaluations	or elastic scatt	ering indeed ne	ed to be lower	eu by ~3%, as p	proposed by Pic	Smpen, Lubitz, I	Roubisov etc	
20		covariances fo	r muhar: Need	reliable anisoto	nic 160 scatter	ring uncertainti	es. Palmiotti th	inks Gerry's pre	sent uncertaint	ties are too sma	ll on mubar	
21		covariances io	inabar. Neca		pie 100 seater	ing ancertained		inks denys pre	Serie andereanne		in on mabai.	
-	Capture	ENDF adopted	JENDL's captur	e cross section	to include reso	nance contribu	tion - establish	consensus to u	se this			
23												
24												
	(n,a)											
26				all largely same								
27		Review previou	us data, and ag	ee on scales - e	eg Bair & Haas	had renorm the	eir original data	down by ~20%	; Are Johnson	data the same	as these?	
28		-										
29								3C(a,n) for astro	ophysics			_
30						point to change	es above					_
31 32				(Hale, Kunieda,		fluoneed by tet	al cross cos dat	ta, suggest ~30	(hichor (n. a)	than most mos	curomonto	
33								Or do we conclu				icle er
34								concluded new				
35		Assess whethe			i entri y above i		ananging, intera	s concluded new		more accurate		aata
	Integral	Establish suite	of integral value	ation tests, inc	luding k-eff, tra	ansmission, etc						
37								in the SINBAD of	database			
88		Broomstick ex										
39								, on LEU solutio				
10						6 MeV region in	npact any appli	cations significa	ntly (maybe m	edical application	ons)? Carlson n	otes M
11		check astrophy	sics constraint	s on 13C(a,n) r	eaction rate							
12												
13												
44												
45												
16		1293										
	631.	1343	-	-		-	-	-				-

¹⁶O. Work is Needed to Reconcile R-Matrix Theory & Data & Maintain Criticality and Transmission Performance


An interesting case of seemingly discrepant information coming from *theory* versus *experiment*!

(R-matrix theory + total cross section data seems to suggest a higher (n,a) than measurements. Being an empiricist, I know who I'd bet on!).

Uncertainties & Covariances for CIELO

 \cup (11, 111)

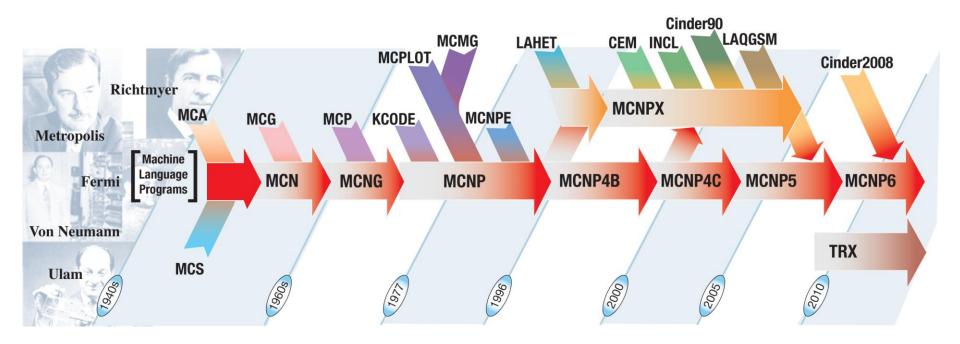
Talou, Young, Kawano, Rising, Chadwick, DS 112, 3054 (2011) OS Alamos Covariances are now available in the major evaluated libraries. This allows us to:

-Focus experiment & theory efforts

- Calculate uncertainties on integral neutronic performance

 Provide feedback on cross section updates, via "adjustment" projects (SG33) or "assimilation"

-- We'll work with the new WPEC subgroup 39


Join our CIELO collaboration Enjoy the workshop – Thanks to IRMM & NEA/IAEA for support!

BACKUP SLIDES

MCNP6 Production release, 2013

- MCNP6 = MCNP5 + MCNPX + several new features
- 2 DVD set will contain 5,X & 6 + ENDF 7.1 and > 1 Gbyte of documents
- MCNP 5/X/6 Beta 2 had 2,452 copies sent out in FY12 and more than 11,000 in the last 11 years!
- See "Initial MCNP6 Release Overview" Nuclear Technology, Dec 2012

CIELO – the 3rd Act: Learn from Wagner ... "Begin as You Mean to Go On"

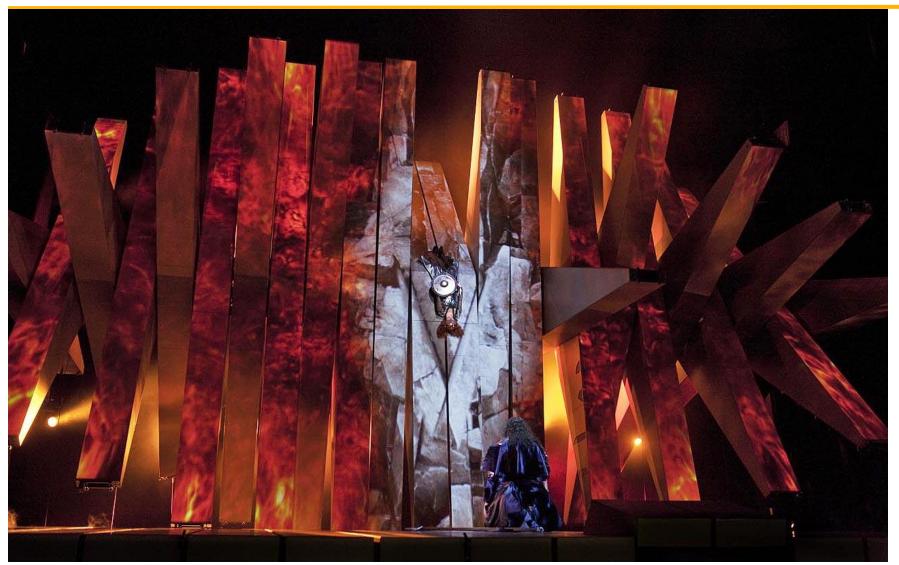


Photo by Salazar's Opera Family Circle