

Experiments in Europe

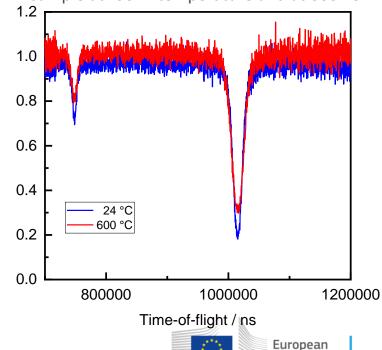
Arjan Plompen WPEC-33, 13 May 2021

Joint Research Centre

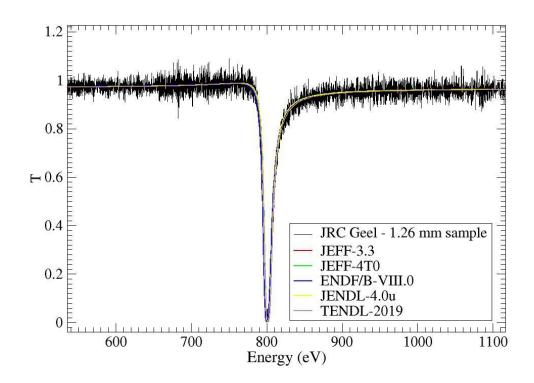
Sources

- JRC Geel
- n_TOF, CERN
- IFIN-HH, Bucharest
- CNRS/IPHC, Strasbourg
- HZDR Elbe, Dresden
- PTB, Braunschweig
- SANDA

ANDANTE: highlight


GELINA:

new transmission station for **high temperature cross section measurements** to study the **Doppler effect**


Comparison of experimental transmission for 1 mm W sample at room temperature and at 600° C

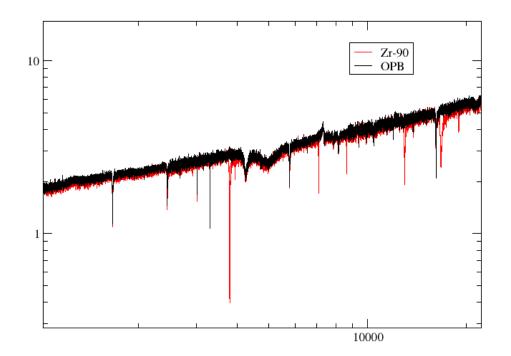
Commission

Bismuth_MYRRHA EUFRAT proposal

- To improve the evaluated data for Bismuth
- Included in EC Horizon2020 Project SANDA

Bi-209

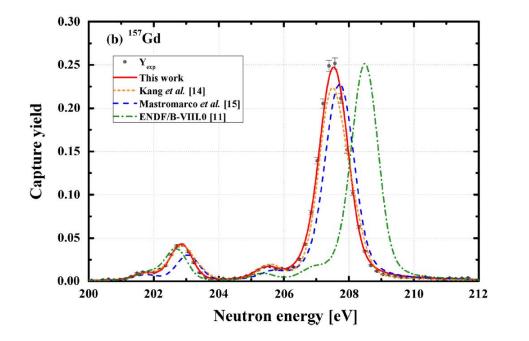
Comparison of experimental transmission for 1.26 mm sample with state-of-theart nuclear data libraries at ²⁰⁹Bi first resonance (802 eV).


Contributions to EXFOR database in 2020

- Results of time-of-flight transmission measurements for ^{nat}Ag at a 10 m station of GELINA R,INDC(EUR)-0036,2020. EXFOR entry 23533 (within EUFRAT).
- Results of time-of-flight transmission measurements for ^{155,157}Gd at a 10 m station of GELINA R,INDC(EUR)-0037,2020. EXFOR entry 23727 (within EUFRAT).
- Results of time-of-flight transmission measurements for ¹⁰³Rh at a 50 m station of GELINA. R,INDC(EUR)-0034,2020. EXFOR entry 23455.

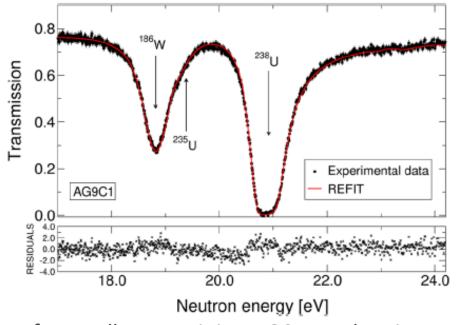
Criticality safety programme

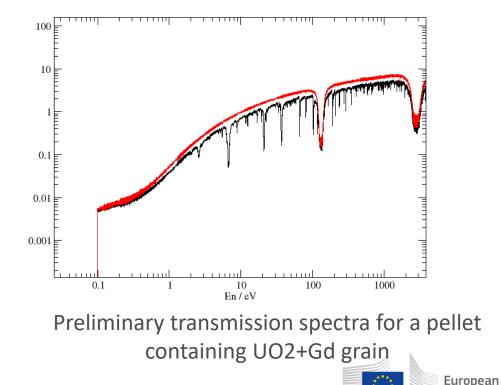
- ORNL DoE collaboration
- ^{nat}Ca and ^{nat}Ce reported and included in EXFOR (entries 23405 and 23322)
- natV and ¹⁴²Ce recently submitted to EXFOR (in approval by NNDC)
- Currently transmission and capture experiments on ⁹⁰Zr ongoing.



Preliminary TOF spectra for ⁹⁰Zr transmission experiment

Experimental program on Gd isotopes

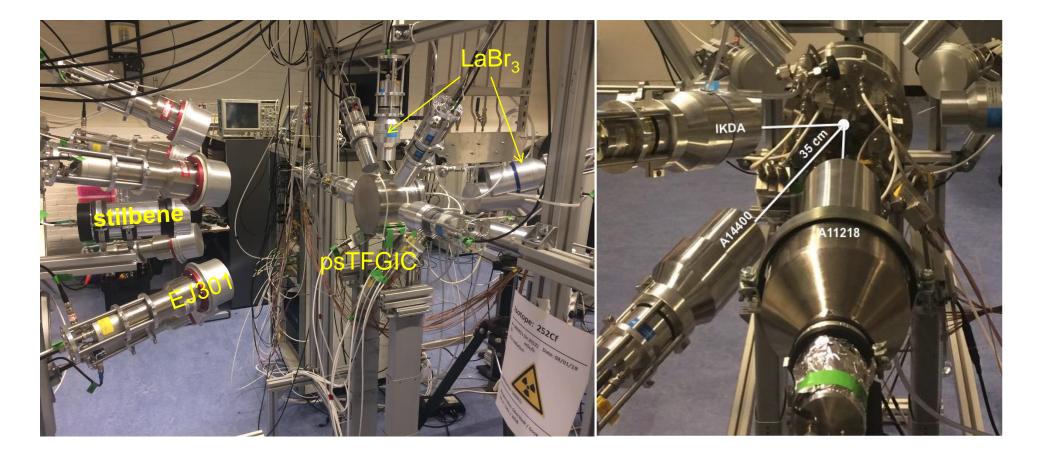

- Transmission (R,INDC(EUR)-0037,2020) and capture data (EPJA 56(2020)30) on natural and enriched isotopes.
- Evaluated data file with resonance parameters (<500 eV) in preparation.



NRTA with MINERVE pellets

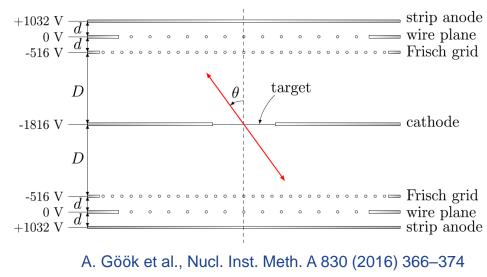
- Previous NRTA with pellets containing UO2 and Ag (JRNC 321 (2019) 519-530) or Tc (PRC 102 (2020) 015807)
- Currently measuring pellets containing UO2 and Gd with 5 different sizes of Gd grain to study systematic effects (EUFRAT proposal 2020 call)

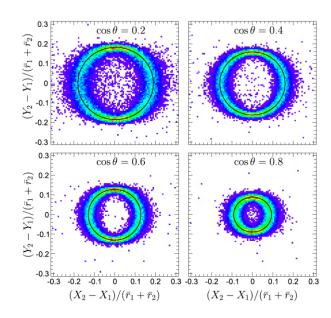
NRTA for a pellet containing UO2+Ag, showing a significant amount of W not reported in the specifications

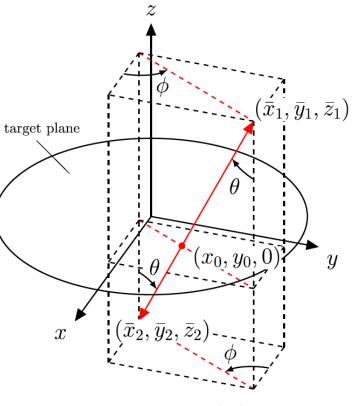

Commission

Investigation of the de-excitation process in fission fragments (Stephan Oberstedt)

- Mass- and TKE-dependent prompt fission g-ray multiplicity
- Angular distribution of g-ray emission
- Isomeric yields
- Providing data for nuclear modelling (e.g. FIFRELIN)
- Collaboration with CEA (Valentin Piau's PhD thesis)
- Measurements performed with VESPA++
 - Position-sensitive Twin Frisch-grid Ionization Chamber (psTFGIC)
 - Lanthanum-halide detectors for g-rays
 - EJ301 and stilbene detectors for neutrons

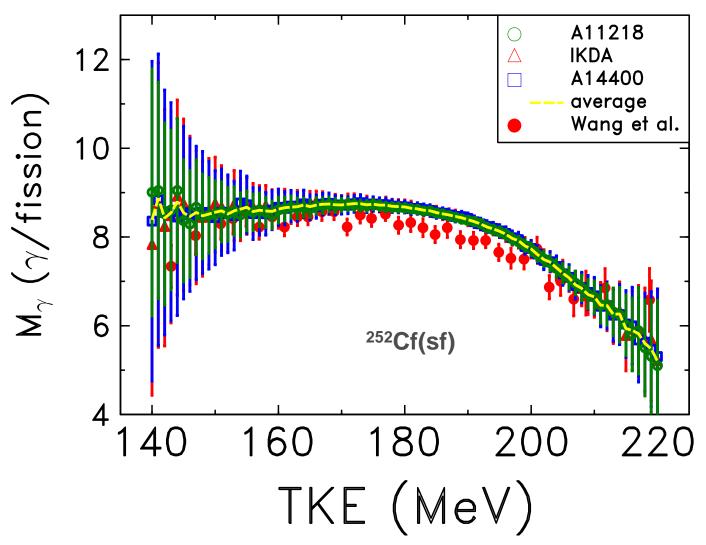

VESPA ++



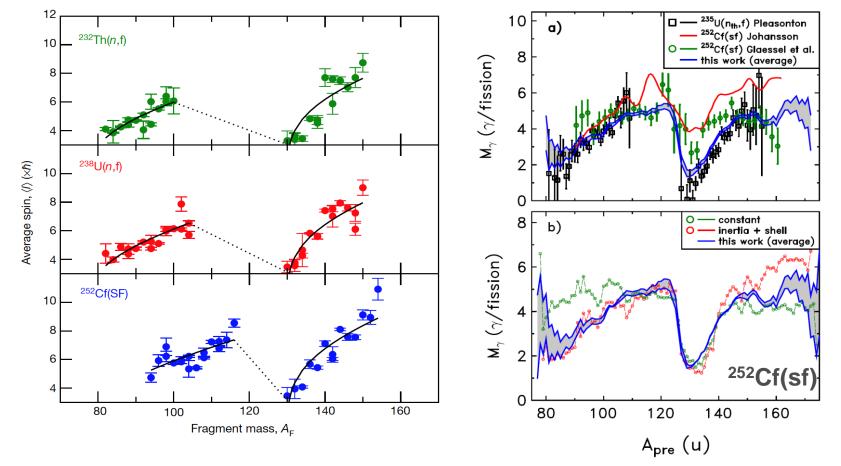


Position-sensitive FGIC

Suitable design for large targets !

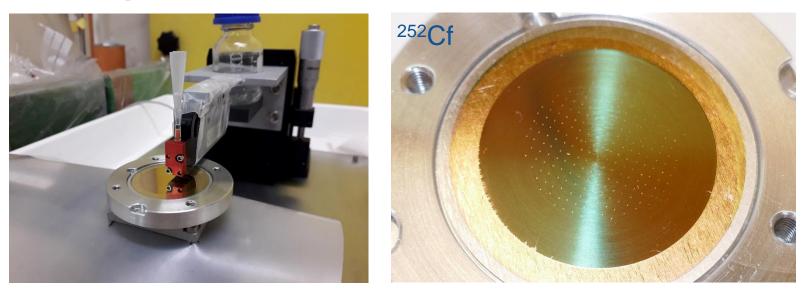


M_{γ} (TKE)



Average angular momentum and M_{γ} (A^{*})

v-Ball1 (IJCLAb Orsay)


VESPA++ (JRC Geel)

Nature 590:566 (2021)

Research on the fabrication of spectroscopic actinide targets

Accelerator-based production of medical isotopes

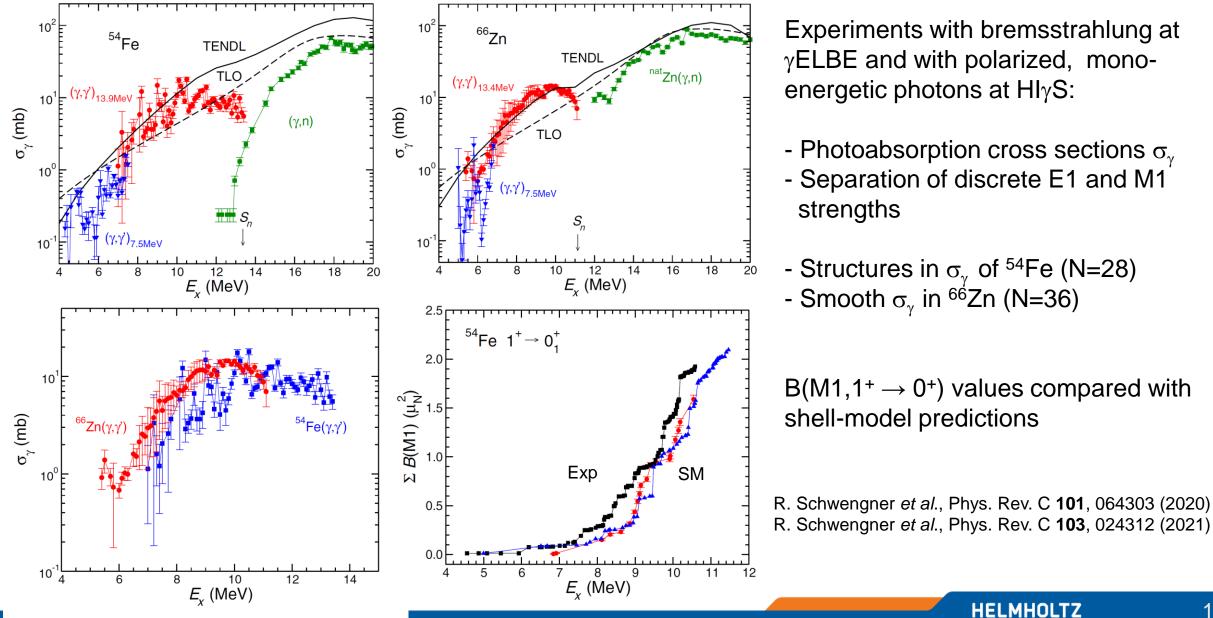
- Irradiation of molybdenum nano-particle with neutrons or photons
 - ⁹⁹Mo extraction by centrifugation
 - Yield determination by means of gamma spectrometry
- Feasibility study for production of ²²⁵Ac by neutrons or photons of ²²⁶Ra

ELBE nuclear facilities

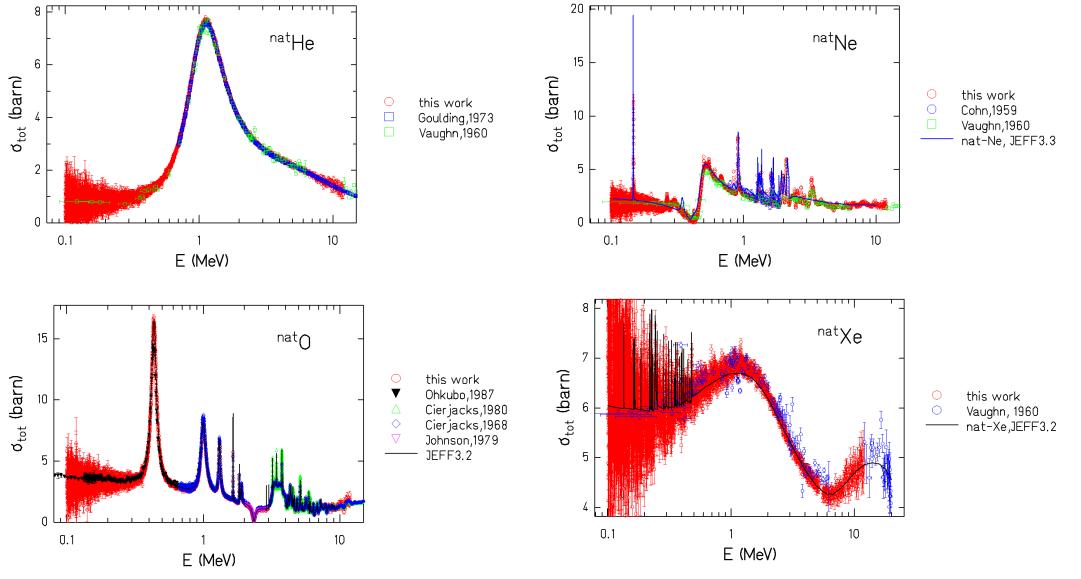
nELBE: worldwide unique photoneutron source with energies of 0.1 - 10 MeV, 10⁴ s⁻¹ cm⁻², 10 - 400 kHz, low instantaneous flux

Fast neutron scattering, neutron transmission, neutron induced fission, time-of-flight measurements

- γELBE: worldwide unique bremsstrahlung source with endpoint energies up to 18 MeV, 10⁸ photons s⁻¹ cm⁻², cw mode, low-background setup. Photon scattering, photoactivation, high-resolution γ-spectroscopy.
- γELBE and nELBE are unique user facilities (LKII)
- Uniqueness through continuous wave operation with high average currents and excellent time resolution


Accelerator and Research reactor Infrastructures for Education and Learning

ARIEL 09/2019- 02/2024


EURATOM fission programme 2018
 Education & training activities; transnational access for neutron beam facilities (Coord. HZDR) 2 M EUR

Electric and Magnetic Dipole Strength in ⁵⁴Fe and ⁶⁶Zn

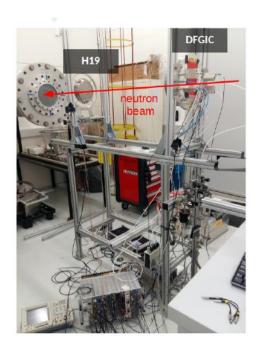
17

Transmission measurements in the fast neutron range at nELBE

A. Junghans et al., EPJ Web of Conferences 239, 01006 (2020)

JEFDOC-2039

$^{16}\mathrm{O}(\mathrm{n},\alpha)$ cross section normalization measured at GELINA


Sebastian Urlass¹, A. Junghans¹, R. Beyer¹, T. Kögler¹, D. Weinberger¹, G. Alerts², J.-C. Drohe², A. Göök², J. Heyse², S. Kopecky², S. Moscati², M.Nyman², C. Paradela², A. Plompen², P. Schillebeeckx², D. Vendelbo², M.Vidali², R. Wynants². R. Nolte³ and L. Tassan-Got⁴.

April 21, 2021

¹ HZDR ² JRC ³ PTB ⁴ IJCLab

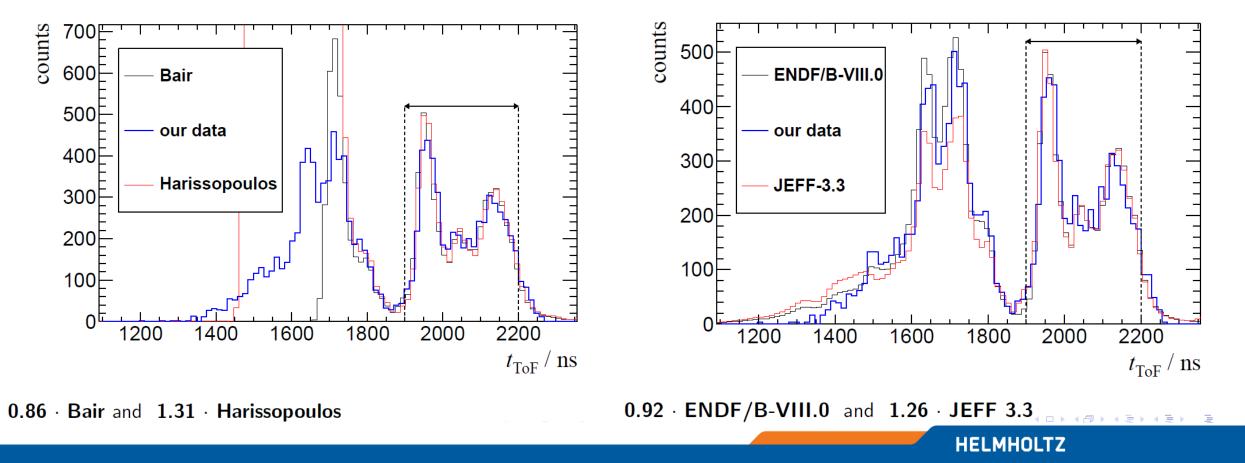
This work forms part of the PhD thesis of Sebastian Urlass, TU Dresden 2021, in preparation.

¹⁶O(n, α) reaction measurement at GELINA

Flight Path (FP) station 16-60m:

- neutron beam diameter: 63mm
- duration: 2 weeks (9.5 days)
- rep. rate: 400Hz

Detectors:


- H19 fission Ionization Chamber[1]
- Frisch Grid Ionization Chamber (FGIC)

[1] R. Nolte et al. Nucl. Sc. and En.:156, 197-210 (2007).

Sebastian Urlass, recommendation for normalization $^{16}O(n,\alpha)^{13}C$

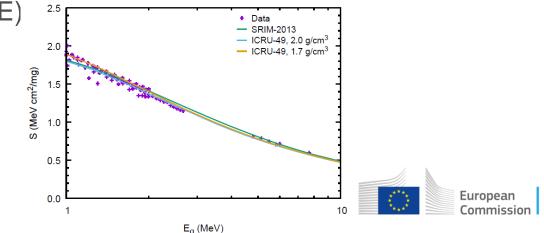
Jefdoc-2039 (unc. 6%)
normalization region between 1900-2200ns (4-5.3MeV)

 normalization region between 1900 - 2200 ns (4 - 5.3 MeV) avoid incomplete energy deposition at higher energies

Thick target yield measurements: ^{nat}C(n,a) tty

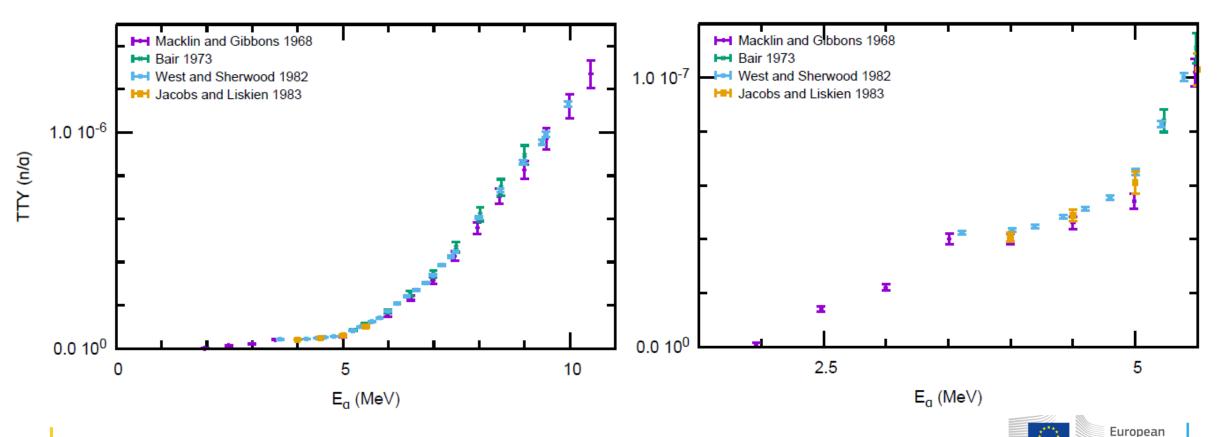
- Macklin and Gibbons (a) and Bair (b) at the ORNL van de Graaff and tandem used a large graphite sphere with BF4 proportional counters for 4pi neutron counting
- West and Sherwood at the NPL van de Graaff used a large polyethylene cylinder with ³He proportional counters for 4pi neutron counting.
- Liskien and Paulsen used the JRC-Geel van de Graaff to determine the double differential spectra of the emitted neutrons. These were energy and angle integrated.

R. Macklin and J. Gibbons, "Absolute neutron yields from thick target ^{nat}C(α ,n)," Nucl. Sci. Eng., vol. 31, p. 343, 1968. J. Bair, "Absolute neutron yields from alpha-particle interaction with thick targets of natural carbon," Nucl. Sci. Eng., vol. 51, p. 83, 1973. D. West and A. Sherwood, "Measurements of thick-target (α ,n) yields from light elements," Ann. Nucl. Energy, vol. 9, p. 551, 1982. G. Jacobs and H. Liskien, "Energy spectra of neutrons produced by alpha-particles in thick targets of light elements," Ann. Nucl. Energy, vol. 10, p. 541, 1983.

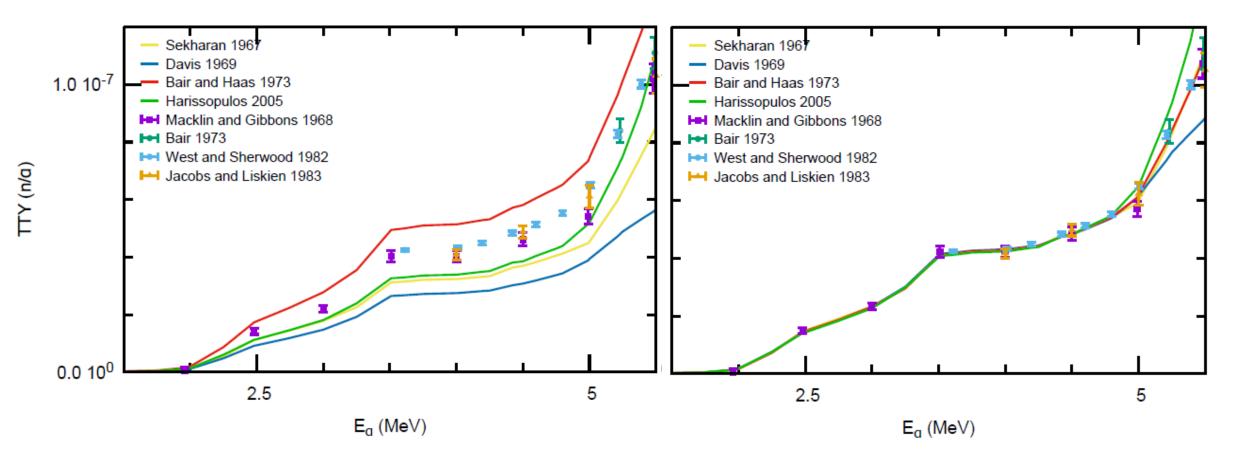


Normalization of thin target data for ¹³C(n,a)

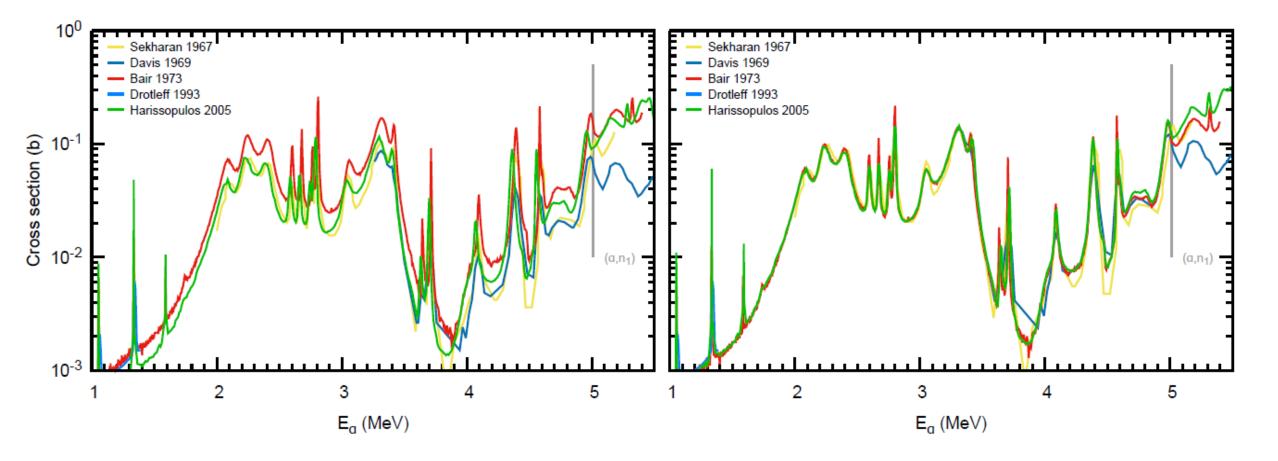
- Converted to cross sections in case they were stated as S-factors (low energy)
- Converted to thick target yields when the data covered a wide enough energy range.
- Some data sets were complemented at low energy to allow a meaningful integration.


$$S(E_{\alpha}) = \frac{m({}^{13}C)}{m({}^{13}C) + m(\alpha)} E_{\alpha} e^{2\pi\eta} \sigma(E_{\alpha}) \qquad \qquad Y(E_{\alpha}) = \frac{a({}^{13}C)N_{A}}{M} \int_{0}^{E_{\alpha}} \frac{\sigma_{n,\alpha}(E)}{L(E)} dE$$

- Stopping powers L(E) were taken from SRIM and from ASTAR/ICRU-49.
- Yields vary 2% depending on the choice of L(E)


What does it look like?

Useful range for normalization is from 3.5 to 5 MeV in E_a


Commission

Before and after normalization: TTY

Before and after normalization: ¹⁶O(n,a)

Summary for normalization

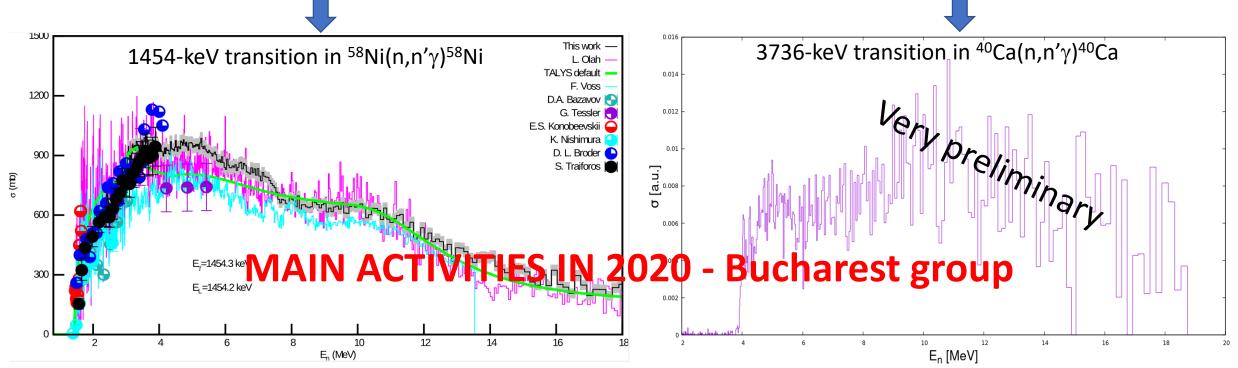
Differences between Sebastian's work and the normalization based on West and Sherwood by me are within the uncertainty of the TTY normalization of 8%

Sebastian's work provides an excellent new experimental confirmation for the TTY results.

	Urlaß	Plompen	Pigni&Croft[3]
Reference		West&Sherwood[4]	Bair[5]
reaction(s)	16 O(n, $lpha_0$) yield	¹³ C(α ,n) TTY	¹³ C(α ,n) TTY,
			Harissopoulos[6]
			reson. at 1MeV
uncertainty	6%	8%	9%
mainly due to	statistics	¹³ C abundance	¹³ C abundance
scaling factors			
ENDF/B-VIII.0	0.92	0.89	
JEFF-3.3	1.26	1.25	
Bair&Haas[7]	0.86	0.85	0.8
Harissopoulos[6]	1.31	1.27	1.15

Conclusions

- There is now an unambiguous result for the normalization of thin target ¹³C(a,n) data and historical ¹⁶O(a,n) data.
- It is based on measurements of the thick target yield of ^{nat}C(a,n).
- It is confirmed by a new independent measurement by Sebastian Urlaß and coworkers from HZDR, CERN and JRC Geel that was pioneered at CERN and HZDR with final results from GELINA.
- The new evaluation of Luiz Leal (adapted since JEFF-3.3) follows the proposal of this work for the normalization.
- For energies above 5.6 MeV the new evaluation still needs a further increase of the (n,a) cross section.
- This is relevant since 50% of the ${}^{16}O(n,a)$ reaction occurs with $E_n > 5$ MeV.


^{nat}Ni(n,n' γ)^{nat}Ni @ GELINA

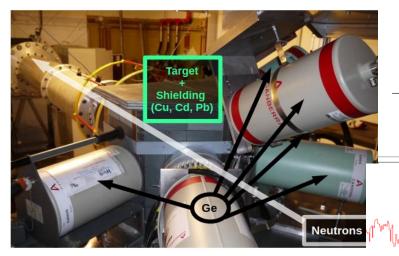
⁵⁸Ni(p,p'γ)⁵⁸Ni @ 9-MV Tandem Accelerator of IFIN-HH, Bucharest

- Data analysis finalised for both measurements
- Article in preparation & to be submitted to Physical Review C

Ongoing experimental campaign @ GELINA

- ${}^{40}Ca(n,n'\gamma){}^{40}Ca \& {}^{19}F(n,n'\gamma){}^{19}F$ measurements
- Preliminary data analysis

⁴⁰Ca(p,p'γ)⁴⁰Ca @ IFIN-HH


- Experiment proposed by the French collaborators (<u>Gregoire Henning</u>, Maelle Kerveno, Philippe Dessagne) within ARIEL
- Experiment proposal accepted by the ARIEL PAC but pending due to travel restrictions (COVID pandemic)

Ongoing data analysis for a previous ⁵⁷Fe(p,p'γ)⁵⁷Fe measurement @ IFIN-HH

GRAPhEME

233U data analysis is in progress, encouraging results are coming.
PhD F. Claeys

In blue g-transitions from 233U. At least, for 6 of them, François will be able to determine XS. 29-Apr-21 16:19:45 inelMOD E_n ∈ [1, 8] MeV Radioactivity Fission product Autres.. 233U Mar Mar Mar Marine Ma 5111,1 5132,66 5159,9 233U 233U 233U 298,81 300,129 301,94 (n,n) (n,n) (n,n) 45640 13944 4922 (±628) (±552) (±585)
 5198.3
 5221.0
 5236.9
 5264.6

 91Rb
 233U
 98Y
 134Sb

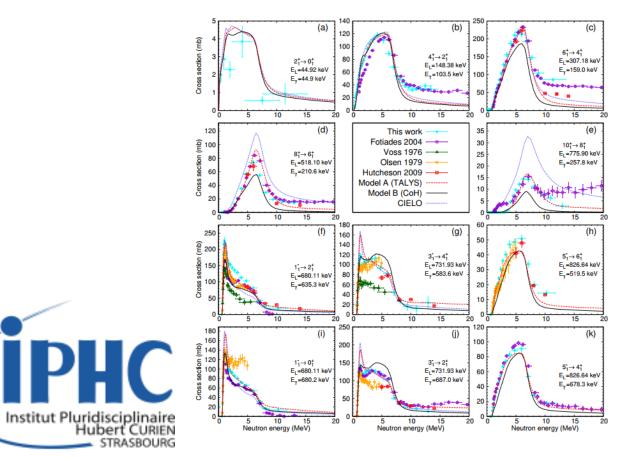
 304.1
 305.4
 306.4
 307.5

 PF
 (n,n)
 PF
 PF

 1246
 8492
 4394
 2941

 (±577)
 (±567)
 (±585)
 (±639)
 E_γ (ch) ^Aχ E_γ (keV) reaction N_{maps} (±ΔN_{maps}) 5053,1 1371 295,8 PF 13202 (±650) 5335,05 233U 311,9 (n,n') 55745 (828) 5367,5 233U 313,34 (n,n') 15666 (±800) 5413,9 229Th 317,169 5080,4 73Ge 297,32 (n,n') 22485 (±616) 5299 92Rb 309,9 PF 5154 (±688) 29-Apr-21 17:33:50 inelMOD E_n ∈ [1, 8] MeV Radioactivity **Fission product** Autres... 233U Mr. Maynon Maynow N 5111,1 5132,66 5159,9 233U 233U 233U 298,81 300,129 301,94 (n,n) (n,n) (n,n) 45640 13944 4922 (±628) (±552) (±585) 5198.3 5221.0 5236.9 5264.6 91Rb 233U 98Y 134Sb 304.1 305.4 306.4 307.5 PF (n,n) PF PF 1246 8492 4394 2941 (±577) (±567) (±585) (±639)
 5053,1
 5080,4

 137I
 73Ge

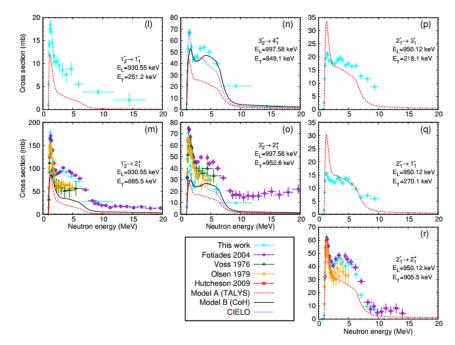

 295,8
 297,32

 PF
 (n,n')

 13202
 22485
 5299 92Rb 309,9 PF 5154 5335,05 233U 311,9 (n,n) 55745 (828) 5367,5 233U 313,34 (n,n') 15666 (±800) 5413,9 229Th 317,169 E_Y (ch) ^X E_γ (keV) reaction N_{outes} (±ΔN_{outes})

GRAPhEME

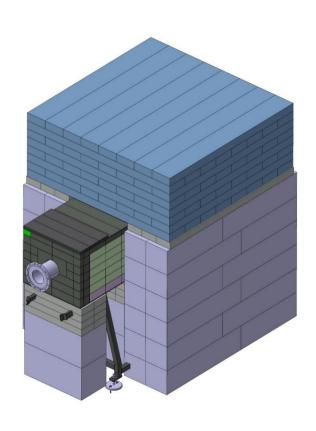
- The preparation/purification of the 239Pu samples has started.
- The experimental setup will be upgraded regarding the acquisition system (FASTER) and the added of a new planar detector.

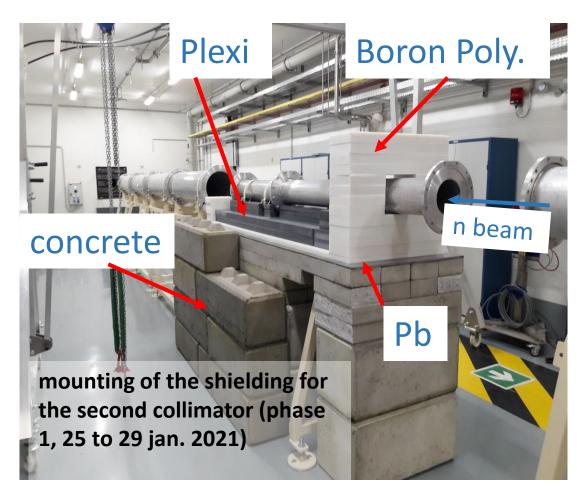

M. Boromiza,⁶ R. Capote,⁷ C. De Saint Jean,^{2,3} P. Dessagne,¹ J. C. Drohé,⁴ G. Henning,¹ S. Hilaire,^{2,3} T. Kawano,⁸ P. Leconte,⁵ N. Nankov,⁴ A. Negret,⁶ M. Nyman,⁴ A. Olacel,⁶ A. J. M. Plompen,⁴ P. Romain,^{2,3} C. Rouki,⁴ G. Rudolf,¹ M. Stanoiu,⁶ and R. Wynants⁴ ¹Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess 67037 Strasbourg, France ²CEA, DAM, DIF, F-91297 Arpajon, France ³ Université Paris-Saclay, CEA, Laboratoire Matière sous Conditions Extrêmes, 91680 Bruyères-Le-Châtel, France European Commission, Joint Research Centre, Retieseweg 111, B-2440 Geel, Belgium CEA, DES, IRESNE, DER, SPRC, LEPh, F-13108 Saint-Paul-lez-Durance, France ⁸Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA (Dated: April 16, 2021) A better knowledge of (n,xn) reaction cross sections is important for both reaction modeling and energy applications. This article focuses on ²³⁸U neutron inelastic scattering for which improvements are needed to better constrain evaluations and solve inconsistencies in nuclear reactor calculations. A new precise measurement of $(n,xn \gamma)$ reaction cross sections on ²³⁸U has been performed at the GELINA (Geel Electron LINear Accelerator) neutron facility operated by EC-JRC-Geel (Belgium) with the GRAPhEME (GeRmanium array for Actinides PrEcise MEasurements) setup. The prompt γ -ray spectroscopy method coupled to time-of-flight measurements is used to produce $(n, xn \gamma)$ cross sections which can be further combined to infer the total neutron inelastic scattering cross section (n,n' γ) cross sections for 18 γ transitions (five never measured before) are presented and compared to the data in the literature. Emphasis is especially given to the uncertainty determination to produce partial cross sections as accurate as possible. Due to intrinsic limitations of the experimental method, the use of additional nuclear structure information coupled with theoretical modeling is required to determine the total (n,n') cross section over the whole neutron energy range. We have investigated modeling aspects of the 238 U(n,n' γ) cross sections related to the description of compound nucleus and pre-equilibirum mechanisms as well as the discrete part of nuclear structure. Through comparison between experimental and calculated $(n,n' \gamma)$ cross sections, we pinpoint inaccuracie

in the description of specific reaction mechanisms and challenge recently implemented models. This

helps improving the whole modeling of the (n,n') reaction.

 238 U(n,n' γ) cross sections measurement and their impact on the models

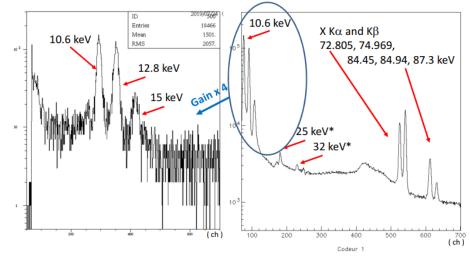

M. Kerveno,^{1,*} M. Dupuis,^{2,3} A. Bacquias,¹ F. Belloni,⁴ D. Bernard,⁵ C. Borcea,⁶



APS/123-QED

NFS

The finalization of the mounting of the second collimator with its shielding will be achieved before this summer. Beam time has been accepted by the GANIL PAC to study the background conditions at 30 m in view of the realization of (n,xn g) measurements with GAINS and GRAPhEME. The test will be performed in September 2021.



DELCO

June-July 2019 new Si cristal (N2L cooled)

Energy distribution at low energy

After several investigations, the collaboration has now a suitable detector for the observation of electrons coming from internal conversion process in actinides. Tests with 238U sample are planned as soon as it will be possible to go on site.

Institut Pluridisciplinaire Hubert CURIEN STRASBOURG

Ongoing work at n_TOF, CERN

Summary of the November 2020 n_TOF meeting

For further information check the n_TOF data dissemination page:

https://twiki.cern.ch/twiki/bin/view/NTOFPublic/DataDissemination

Progress report on the measurement of the ¹⁴N(n,p) reaction at EAR2

Pablo Torres-Sánchez, J. Praena, I. Porras

University of Granada

DSSSD Setup

DSSSD setup with back-toback 14N and 35Cl samples Additional runs with dummy (Al backing) and a 10B reference

DSSSD UGR-CNA Chamber Edimburgh-n_TOF. Setup of experiment in collaboration with C. Lederer-Woods, S.J. Lonsdale, R. Garg, M. Dietz and M. Sabaté-Gilarte.

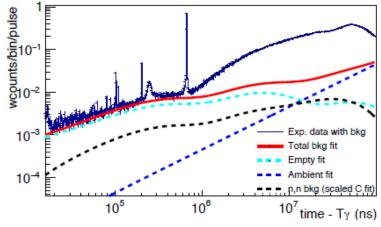
Outlook

Next steps with DSSSD:

- Data below 200 keV is ok
- Find a solution to the count loss at the resonance region
 - Check possible pulse misidentification during rootfile production
- Error estimation calculations for DSSSD
- Extend range at least to the first resonance
 - Apply SAMMY fit including the RF to extract resonance parameters
- Prepare a Draft for publication

n_TOF Collaboration Meeting Online, June 9th 2020

Pablo Torres-Sánchez


³⁵Cl(n, γ) analysis update

(June 2018, EAR1 — C6D6)

S. Bennett, T. Wright, I. Porras and the n_TOF collaboration

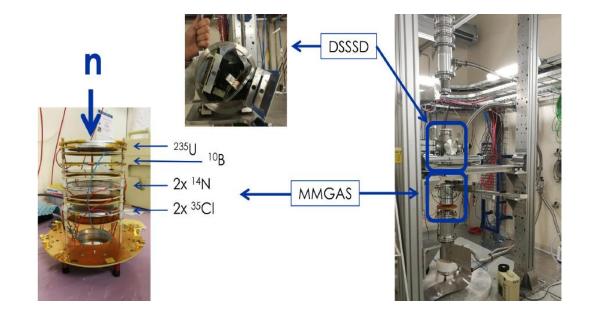
virtual collaboration meeting

November 25, 2020

- ► so far in the analysis:
 - data quality
 - detector response & calibration
 - dead-time corrections
 - time-to-energy
 - weighting-functions & suitable cascades
 - background subtraction
 - sample contaminant checks (ICPMS)
- ► yet to complete:
 - check on low energy flux with SiMON
 - ▶ production of yield & SAMMY analysis (13 visible resonances)
- unsolved issues:
 - unidentified high energy counts
- ► Alternative TED method potential for heavy nuclei (0⁺ g.s.?)

F. García-Infantes, J. Praena, I. Porras and P. Torres University of Granada, Spain

Current status of the analysis of the ³⁵Cl(n,p)³⁵S reaction

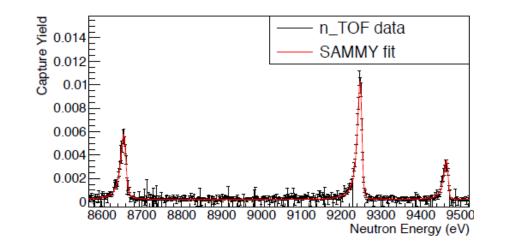


UNIVERSIDAD

DE GRANADA

n_TOF Collaboration meeting November 26-27, 2020 ER

Motivation: BNCT and astrophysics

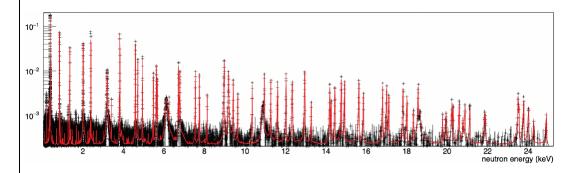

Neutron capture cross sections of ⁷⁶Ge at n_TOF EAR-1

A. Gawlik, C. Lederer-Woods, M. Krtička, S. Valenta, J. Perkowski, J. Andrzejewski and the n_TOF Collaboration

ISOT	OPIC DISTRIBUTION in ⁷⁶ Ge target				
ISOTOPE	⁷⁰ Ge	⁷² Ge	⁷³ Ge	⁷⁴ Ge	⁷⁶ Ge
CONTENT(%)	0.06	0.09	0.06	11.33	88.46

Summary

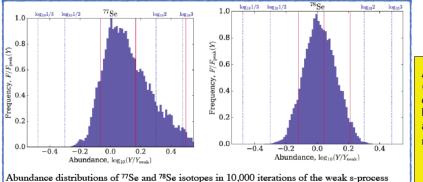
- we parameterized 47 resonances up to neutron energy of 94 keV, 41 in RRR (from thermal to 52 keV)
- Statistical analysis of the resonance parameters still ongoing
- MACS for 5 -100 k_BT combined with ENDF or/and with predicted cross section based on the RRR parameters (Milan & Standa)
- Final uncertainty estimation
- and of course.. paper (draft is almost ready)



^{77,78}Se(n,γ) Measurement : Status Update (Part I)

Data analysis - Sammy fits to Se78 spectrum

- Previously measured 21 resonances between 0.38 40 keV.
- Sammy fitting to present data: 0.1 25 keV 52 new resonances.
- Normalisation of the beam fraction on sample is evaluated using the saturation plateau of the 4.9 eV Au resonance.
- Flat background assumed in single resonance fitting.

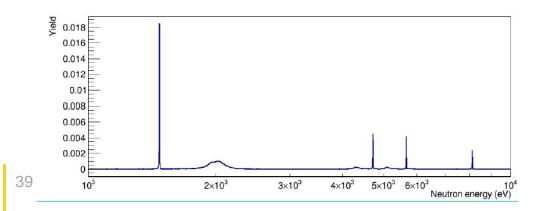

Conclusion

- Neutron induced reaction cross sections are required for reproducing the abundances of elements heavier than iron.
- Experimental data with high accuracy is required for the stellar modelling.
- Data analysis on the 77,78Se and 68Zn measurement is ongoing.
- Next steps:
- Resonance fitting in the RRR (Resolved Resonance Region) possibly as high as 100 keV.
- MACS calculation.

Ruchi Garg

University of Edinburgh, UK

Astrophysical Motivation


A detailed sensitivity study of the (weak) s-process by Nishimura *et al.* showed strong correlation between uncertainties in 77,78 Se abundances and 77,78 Se (n,γ) reaction rates uncertainties.

[MNRAS 469, 1752-1767 (2017)]


Preliminary capture yield

• Neutron energy between 1 keV and 10 keV.

⁸⁰Se(n,γ) @ EAR1

- 2018 campaign (May).
- ⁸⁰Se sample ~3 g (99.9%).
- Motivations:
 - S-Process branching at ⁷⁹Se

Summary and outlook

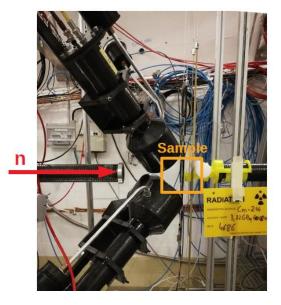
Analysis of the experiment is now ongoing.

Until now, we have studied:

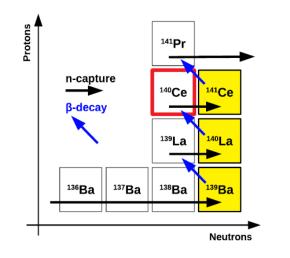
- Effects of rebounds.
- The count rate and gain stability of the C₆D₆ detectors.
- Weighting functions and their uncertainties.
- PHWT correction factors.
- The flux correction from the evaluated version.

Study currently ongoing:

• Finding background components


Next steps:

- Determine the experimental capture yield.
- R-Matrix analysis with SAMMY.
- Astrophysical interpretations of the results.



Status of ¹⁴⁰Ce(n,y)

Target	Protons	
Ce140	1.92E+18	
Dummy	2.04E+17	
Pb	7.54E+16	
Empty	7.57E+16	
Gold	4.78E+16	
Ce140 + filters	9.00E+16	
Dummy + filters	9.80E+16	
Pb + filters	1.40E+17	
Total	2.65E+18	

Conclusions and perspectives

A measurement of ${}^{140}Ce(n,\gamma)$ cross section has been successfully performed at n_TOF, the resonance analysis has been carried out up to 65 keV and the parameters of s and p waves has been estimated.

Next steps will be:

1)Check the correctness of the p-wave assignment.

2)Complete the work on resonances average parameters and spacing.

3)Compute the MACS.

4)Include the new MACS in the stellar model and evaluate the impact.

Results of the ${}^{203}Tl(n,\gamma)$ and of ${}^{204}Tl(n,\gamma)$ measurements

Summary, conclusions, future work

²⁰⁴Tl(n,y) analysis results

- Challenges due to sample and exp. setup successfully overcome
- Newly developed self-normalization procedure (employing ²⁰³Tl new data) allowed to analyse for the first time ever capture resonances between 100 eV and 5 keV of neutron energy
- 1 keV MACS bounds, semi-empirical extrapolation of the MACS at higher temperatures

Future work

- Possible new theoretical calculations of ²⁰³⁻²⁰⁴TI(n,y) capture cross section based on n TOF experimental results
- · Simulations with the NuGrid post-processing nucleosynthesis tools to study impact in the ²⁰⁴Pb abundance and the ²⁰⁵Pb/²⁰⁴Pb ratio for the s-process chronometer
- Tackling last capture cross sections for a comprehensive analysis of the s-process termination
 - ²⁰⁵Tl(n,y): under analysis
 - ²⁰⁵Pb(n,v): proposal for production of a sample

Stable ²¹⁰Po ²¹¹Po β⁻ decay 138.38 d 516 ms EC 210 Bi α decay ²⁰⁹Pb ⁰⁷TI

- ²⁰⁴Tl(n,y) measurement of a 15 mg ²⁰⁴Tl sample was successfully performed at n TOF thanks to:
 - Sample production expertise at ILL (France) and PSI (Switzerland)
 - Exceptional features of the facility (high luminosity and resolution)
 - Specifically adapted experimental setup
 - Development of a device allowing to a spatial characterization of the sample

²⁰³Tl(n,y) results

- New experimental data under 3 keV of neutron energy
- Lower kernels in the 3 to 12 keV range compared to previous experiment
- Improved MACS at ¹³C-pocket nucleosynthesis temperatures, constrained value at higher energies
- ²⁰⁵Tl(n,y) measurement in 2018 employing a natural thallium sample, 5x times more massive sample, expected improvement in resonance data

A. Casanovas¹, A.Tarifeño-Saldivia¹, C. Domingo-Pardo², F. Calviño¹, C. Guerrero³, J. Lerendegui-Marco², S. Heinitz, D. Schumann⁴, U. Koester⁵ J.L Taín², J. M. Quesada³

> ¹ Universitat Politècnica de Catalunya (UPC), Barcelona, Spain ² Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Valencia, Spain ³ Universidad de Sevilla, Spain ⁴Paul Scherrer Institute, Switzerland

84P0 83Bi ₈₂Pb 81TI 80Hg

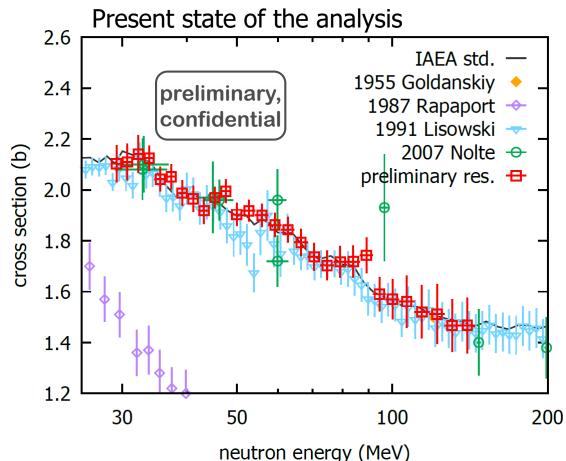
Status of the ²³⁰Th(n,f) analysis at EAR-1 and EAR-2

 V. Michalopoulou^{1,2}, A. Stamatopoulos², R. Vlastou², M. Kokkoris², A. Tsinganis¹,
 M. Diakaki³, Z. Eleme⁴, N. Patronis⁴, J. Heyse⁵, P. Schillebeeckx⁵, L. Tassan-Got¹,
 M. Barbagallo¹, N. Colonna⁶, S. Urlass¹, D. Macina¹, E. Chiaveri¹ and the n_TOF Collaboration⁷

¹CERN, ²NTUA, ³CEA-Cadarache, ⁴UoI, ⁵JRC-IRMM, ⁶INFN-Bari, ⁷www.cern.ch/ntof

- Same experimental setup at EAR-1 and EAR-2 (Micromegas)
- Fission collimator at both areas
- Different active mass of the samples (8 cm EAR-1 / 6 cm EAR-2)
- Targets produced at JRC-Geel (Characterization is performed currently at JRC-Geel)

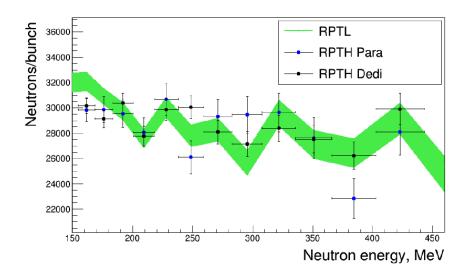
Isotope	Mass µg/cm ²	Activity MBq/sample
²³⁰ Th	44 - 115	1.69 - 4.41
²³⁵ U	72	5.88 · 10 ⁻⁴
²³⁸ U	287	1.80 · 10 ⁻⁴
¹⁰ B	8	-


Next steps

- Correction for lost FF for the ²³⁰Th targets
- Final mass values for the ²³⁰Th targets in collaboration with JRC-Geel
- Final cross-section values
- Finish the PhD write up

PTB Measurement of ²³⁵U(n,f) relative to ¹H(n,n) in the energy range from 30 to 150 MeV at n_TOF

- ²³⁵U(n,f) cross section: most important secondary standard for neutron flux measurements above 20 MeV
- Request from IAEA/NDS of new experimental data in the energy range from 20 MeV to 1 GeV
- ➤ Measurement carried out in 2018 at CERN n_TOF



Presented at the Consultants Meeting on Neutron Data Standards, IAEA, 12-16 October 2020

²³⁵U(n,f)/¹H(n,p) measurement

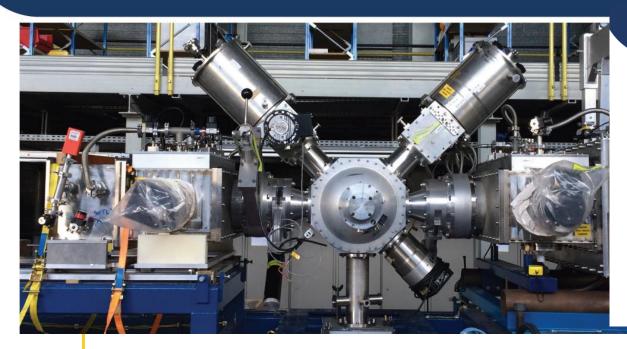
Two RPTs for redundancy and maximum energy range: PTB (150 MeV) and INFN (0.5-1 GeV), simultaneous data taking

INFN RTPs at E_n >200 MeV

Summary

- MCNP/Geant4 agreement can be within ~1-2% if everything is thoroughly tested
 - > input cross section libraries, relativistic effects, forced collisions
- Developed MC model to determine the FC-efficiency energy dependence, biggest difficulty is the inhomogeneity of the deposits
 - > maybe characterisation at the reference fields at PTB?
- RPTs in agreement, chambers not quite
- Analysis above 200 MeV very promising!
- results from 30 to 150 MeV consistent with the IAEA evaluation
- statistical uncertainty: 4-10% (PTB detectors only)

Update on gamma-ray analysis with STEFF


n_TOF Virtual Collaboration Meeting

Adhítya Sekhar*

26th November 2020

*On behalf of STEFF team

SpecTrometer for Exotic Fission Fragments (STEFF)

Summary + Next steps

- Fission gating
- Background subtraction
- Gain correction
- Multiple hits subtraction
- Deconvolution
- Neutron subtraction

Methodology currently being refined with ILL data to be used with n_TOF data (²³⁵U & ²³⁹Pu)

Moving from treatment as an array to handling of individual detectors separately

Ongoing work of the SANDA and ARIEL projects

Summary of the February 2021 meeting

Both started 6 months before the covid-19 outbreak

Progress is seriously hampered by travel restrictions

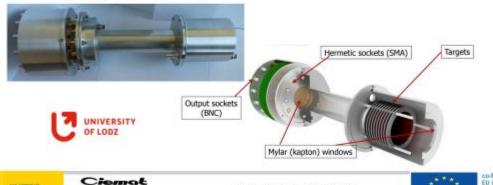
Some examples of the wide scope and interesting plans for measurements are given as appetizer. Results will hopefully follow in the coming years.

For further information, check: <u>https://indico.cern.ch/event/999813/</u>

Measurement of 239 Pu(n,y) and α -ratio at EAR1 with TAC + fission detectors

V. Alcayne¹, J. Andrzejewski², M. Caamaño⁴, F. Calviño⁵, D. Cano-Ott¹ C. Domingo⁶, I. Durán³, B. Fernández⁴, A. Gawlik², E. Gónzalez-Romero¹, C. Guerrero⁷, J. Heyse³, T. Martínez¹, E. Mendoza¹, J. Perkowski², A. Plompen⁷, J.M. Quesada7, P. Schillebeeckx3, G. Sibbens3, A. Tarifeño5

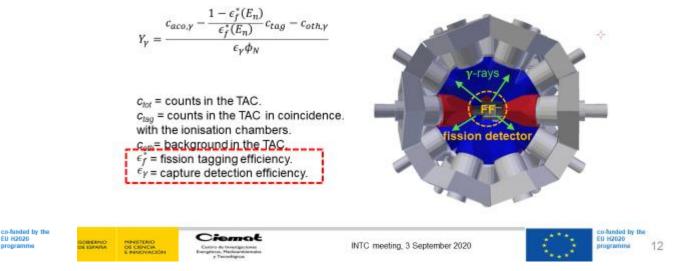
The new fission chamber


EU H2020

programme

A new multi target fission chamber has been built taking into account the following important characteristics:

- Low mass intercepting the neutron beam, to minimize the background in the TAC due to captures and elastically scattered neutrons.
- 2. Good discrimination between alphas (2 MBg/mg) and fission fragments (5 mm gap).
- 3. Small pile-up effects.


Centro de Investigación orgánicas, Havimarshian

INTC meeting, 3 September 2020

Experimental technique

Fission tagging: y-rays in coincidence (fission background) and anticoincidence (capture signal) with the fission detector. (J. Balibrea et al., PRC 102, 2020)

The samples will be provided by JRC-Geel

 Ten thin ²³⁹Pu samples will be manufactured at JRC-Geel with a total mass of ~10 mg (1 mg/sample).

The samples will be placed inside the fission detector, in the center of the TAC. The limitations come from the signal-to-background ratio.

Overall uncertainties: ~3% below 100 eV and 4-6% between 100 eV and 1keV.

II. A thick sample, in order to extend the measurement to higher neutron energies.

This sample will be measured without fission detector. With ~80 mg we could extend the measurement up to 10 keV.

Overall uncertainties: 3-4% between 100 eV and 10 keV.

Ciemat

Contro de Investigacion orgánicas, Hacicambien

MINISTERIO DE CIENCIA

University of Bologna & INFN, Sezione di Bologna

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Measurement of ^{94,95,96}Mo(n, γ) relevant to Astrophysics and Nuclear Technology

September 10, 2020

M. Busse^{1,2}, D. M. Castelluccio^{1,3}, P. Consele Camprini^{1,3}, N. Colonna¹, S. Cristallo^{1,4}, C. Demingo-pardo⁵, A. Guglielmelli^{1,3}, J. Heyse⁶, S. Kopecky⁴, C. Lederer-Woods⁷, A. Manus^{1,8}, C. Massimi^{1,8}, P. Mastinz¹, A. Mengoni^{1,3}, P.M. Milazzo¹, R. Mucciola^{1,2}, C. Paradela-Doharro⁹, T. Rauscher⁹, F. Rocchi³, P. Schillebeeckz⁶, N. Somin⁷, N. Terranova^{1,3}, G. Vannin¹ and the n.TOF Collaboration¹⁰

- Istihuto Nasionale di Fisica Nucleare, INFN, Italy
 University of Peragia Peragia, Roly
 Agensia per le Naver Tecnologie, l'Energia e lo Svihappo Economico Sostenibile, ENEA, Italy
 Istihuto Nasionale di Astrofasica, INAF Terano, Italy
 Istihuto de Fisica Corparedare, CSUC Universidad de Valencia, Spain
 Europaso Commission, Jourin Research Contre, Goel, Belgiann
 Schaol of Physica and Astronomy, University of Edinburgh, United Kingdom
- ⁶ Department of Physics and Astronomy, University of Bologna, Italy ⁹ Department of Physics, University of Basel, Basel, Switzerland

¹⁰ www.orm.ch/n.TOF

Spokesperson: Cristian Massimi (cristian.massimi@bo.infn.it) Technical coordinator: Olivier Aberle (olivier.aberle@cern.ch)

Conclusions

Courtesy of

Cristian Massimi

To improve the status of evaluated data libraries for Mo iscropes and m particular to improve the quality of the recommended capture cross sections, a collaborative effort has been planned as part of the SANDA project supported within the EU Horizon 2020 framework programme:

- capture measurements at n_TOF
- Transmission measurements GELINA

using isotopically enriched Mo metallic samples.

Requested protons: 8×10^{18} protons on target **Experimental Area:** EAR1 and EAR2

Why 94,95,96 Mo?

Molybdenum is relevant for nuclear astrophysics and nuclear technology and presently known with large uncertainties.

