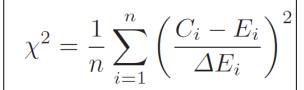

The TENDL team

Status and updates: TENDL

- What is TENDL
- What is new

All slides are available here: https://tendl.web.psi.ch/bib_rochman/presentation.html


What is the TENDL project?

- TENDL: TALYS evaluated nuclear data library,
- Goal: improve simulations for TENDL and/or other libraries, or solving

$$0 \le \chi^2 \le 1$$

- Available at https://tendl.web.psi.ch/home.html
- Comes from T6 (software package)
- T6 leads to TENDL, TMC, BMC, HFR...

• See for instance NDS 155 (2019) 1

Available online at www.sciencedirect.com

ScienceDirect

Nuclear Data Sheets 155 (2019) 1-55

Nuclear Data Sheets

www.elsevier.com/locate/nds

TENDL: Complete Nuclear Data Library for Innovative Nuclear Science and Technology

A.J. Koning, ^{1, 2, 9} D. Rochman, ³ J.-Ch. Sublet, ¹ N. Dzysiuk, ^{4, 5} M. Fleming, ^{6, 7} and S. van der Marck ⁴ Nuclear Data Section, International Atomic Energy Agency, P.O. Box 100, 1400 Vienna, Austria ²Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden ³Laboratory for Reactor Physics Systems Behaviour, Paul Scherrer Institut, Villigen, Switzerland

NRG, Westerduinweg 3, 1755 LE Petten, Netherlands
 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

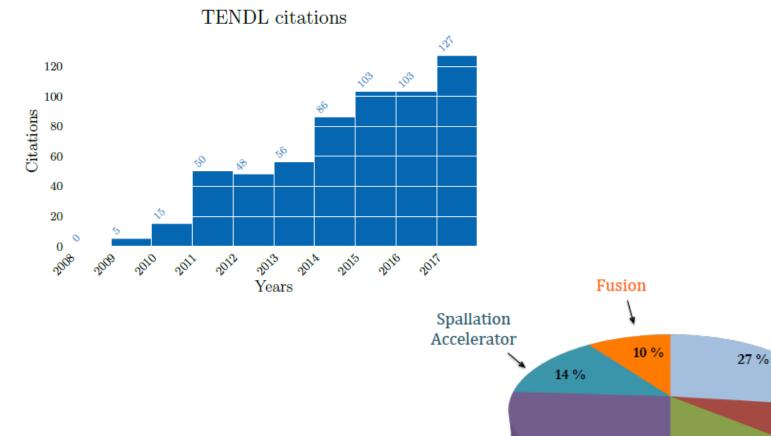
6 Nuclear Energy Agency, OECD, 92100 Boulogne-Billancour, France

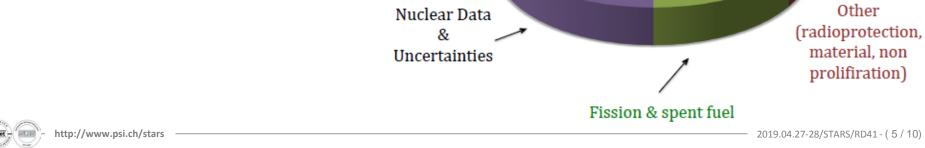
⁷ United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB, United Kingdom (Received 3 August 2018; revised received 7 November 2018; accepted 29 November 2018)

http://www.psi.ch/stars

What is the TENDL project?

- TENDL is in fact a by-product of a series of codes,
- This is one fundamental difference with other libraries (no manual work),
- It allows to perform "TMC" for Total Monte Carlo (uncertainty propagation)
- Methods: reproductibility & completeness, development of a portable system, and making use of the knowledge included in other libraries (JEFF, ENDF/B, JENDL),
- <u>Background:</u> theoretical calculations (TALYS) with experimental inputs, with original resonance evaluations,


Impact:


- TENDL-2008 to 2017 (2800 isotopes),
- Neutrons, protons, deuterons, tritons, He3, alpha and gamma induced,
- all isotopes, all cross sections with covariances, 0-200 MeV,
- more than 300 isotopes in the NEA JEFF-3.3 library,
- more than 50 isotopes in the US ENDF/B-VIII.0 library,
- more than 450 publications using TENDL

What is the TENDL project?

2019.04.27-28/STARS/RD41 - (5/10)

26 %

Medical

Application

9 %

14 %

- To be release at the end of 2019
- Mainly developed between IAEA and PSI
- Beta versions already available (https://tendl.web.psi.ch/tendl 2019/tendl2019.html)
- Similar structure as the previous TENDL
 - 2813 isotopes, 200 MeV, with covariances
 - Neutrons, protons, deuterons, tritons, He3, alphas, and gammas
- New and simplified T6 available "on demand"
- TALYS-1.95 (above resonances)
- TARES-1.4 (resonances)
- NJOY-2016
- PREPRO-2018
- Other codes/tools
- New "library" database (comparisons, import...)

//www.psi.ch/stars — 2019.04.27-28/STARS/RD41 - (6 / 10

- New T6:
 - Newest code versions,
 - more verifications,
 - Linux RedHat/Mac,
 - tested with latest compilers

- Similar structure as the previous TENDL libraries
 - 2813 isotopes, 200 MeV, with covariances
 - Neutrons, protons, deuterons, tritons, He3, alphas, and gammas
 - ACE (PURR for all isotopes, gamma production (iopp=1) included)?
 - ENDF-6 files in different options (MF3 MT5 at 0, 20 or 60 MeV)
 - EAF files
 - MF32 and/or MF33
 - Input files
 - Random files

nttp://www.psi.ch/stars

• <u>TALYS-1.95/TEFAL</u>

- Improved photon strength function: Simplified Modified Lorenzian (better estimated of neutron capture c.s.)
- -30 MeV spectrum problem found by Kwon/Konno solved
- Improvement of specific nuclides (esp. Ni isotopes)
- Includes correct isomeric branching ratios for thermal neutron capture cross sections, e.g. ⁹³Nb(n, gamma)^{94m}Nb (~50 cases)
- Isomeric production of discrete level number > 30 implemented, solves remaining decay heat problems from CCFE benchmarks

- TARES-1.4: resonance formatting and analyzing tool
- Measured/compiled/evaluated resonances:
 - Based on latest JENDL-4.0, ENDF/B-VIII.0 and JEFF-3.3
 - Based on the latest Atlas, 6th edition (2018)
- Statistical resonances:
 - Based on CALENDF
 - Translating the unresolved range from TALYS into statistically resolved range
 - Consistency between the RRR, URR and fast range
- Covariances in MF32 and MF33
 - Consistency between both format
 - Consistent with the random files (using the ENDSAM from IJS)

http://www.psi.ch/stars

Conclusion and future

- The TENDL library is improving year after year, TENDL-2019 being (hopefully)
 a better set
- The new T6 code package allows to produce TENDL, random files and to go further,
- Still, as proven by distributing T6, many improvements are necessary
- Good example for the future expert group on "Modern Nuclear Data Evaluation Methods"
- Future:
 - TENDL based on TALYS-2.0
 - Include reaction data not yet in TENDL
 - Evaluated Gamma-ray Activation File (EGAF)
 - Prompt Fission Gamma Spectra
 - Produce FY library at every release
 - Correct TALYS, experiments and linearity: GP+ MLO + LM from UU (Gaussian process + Marginal Likelihood Optimization + Levenberg-Marquardt UU: Uppsala University)

Net -

Wir schaffen Wissen – heute für morgen

