The European Commission's science and knowledge service

32

3

Joint Research Centre

de.

JEFF report on recent experiments

Arjan Plompen

OECD-NEA, WPEC, June 2019

- Limited overview, on account of limited reporting at JEFF meetings
- JRC, collaborations IFIN-HH, IPHC, PTB, HZDR, ENEA, INFN, CEA
- n_TOF

CHANDA: SOLVING <u>CHA</u>LLENGES IN <u>NUCLEAR DATA FOR</u> THE SAFETY OF EUROPEAN NUCLEAR FACILITIES

CP-CSA (Combination of Collaborative projects, Coordination and Support Actions) to the EURATOM FP7-Fission-2013-4.1.2 (Support to a pan-European Integrated Research Infrastructure Initiative for increased safety of nuclear systems at EU level).
Start: 1 Dec. 2013.
Duration: 54 months.
EU funding: <u>5.4</u> MEuro.
61 Deliverables

<u>Participants:</u>

<u>CIEMAT</u>, ANSALDO, CCFE, CEA, CERN, CNRS, CSIC, ENEA, GANIL, HZDR, IFIN-HH, INFN, IST-ID, JRC, JSI, JYU, KFKI, NNL, NPI, NPL, NRG, NTUA, PSI, PTB, SCK, TUW, UB, UFrank, UMainz, UMan, UPC, UPM, USC, UU, UOslo. +U.Seville

CHANDA: 36 participants (18 countries)

SUPPLYING ACCURATE NUCLEAR DATA FOR ENERGY AND NON-ENERGY APPLICATIONS

Basic data

Coordinator: CIEMAT, Enrique Gonzalez Romero H2020 Grant Agreement number: 847552 A proposal in negotiation for the EURATOM WP2018 for NFRP-2018-4

Proposed Start date: 01/09/2019

Duration: 48 months

Requested contributions: 3.5 MEuros

35 Partners: <u>CIEMAT</u>, Atomki, CEA, CERN, CNRS, CSIC, CVREZ, ENEA, HZDR, IFIN-HH, IRSN, IST-ID, JRC, JSI, JYU, KIT, NPI, NPL, NRG, NTUA, PSI, PTB, SCK-CEN, Sofia, TUW, UB, ULODZ, UMAINZ, UMANCH, UOI, UPC, UPM, USC, USE, UU.
19 countries (A, B, Bg, Cz, D, Es, Fi, F, Gr, H, I, NL, Pol, Pt, Ro, Slo, S, UK)

ARIEL

Accelerator and Research Reactor Infrastructures for Education and Learning

HZDR

DEN ROSSENDORI

UNIVERSIDAD

DE GRANADA

Ciemat

- EURATOM WP 2018 Coordination and Support Action
- Scheme offering access to research & training facilities
 Integration of access to neutron facilities with education and training in collaboration with ENEN
 - 23 participants, 1.7 M€
 - Activities linked with the SANDA project, OECD/NEA, IAEA/NDS and TSOs (GRS, IRNS)
 - Experiments in international teams at first rate facilities as "hands on" training for early stage researchers PAC to select projects of highest scientific value
 - Maintenance of competencies and development of multidisciplinary nuclear competencies be Your logo

Institut "Jožef Stefan"

The n_TOF Collaboration <u>http://www.cern.ch/nTOF</u>

Status and perspectives of the neutron time-of-flight facility n_TOF at CERN

Enrico Chiaveri Spokesperson of n_TOF Collaboration

The n_TOF physics program: neutron-induced reaction measurements

CERN n_TOF – Enrico Chiaveri I135

42 Institutions

- (EU, India, Japan, Russia and Australia)
- 130 scientists
- 2 experimental areas at CERN
- Nuclear Astrophysics
- **Nuclear Physics**
- Nuclear Application:
- Nuclear reactors (fission and fusion)
- Nuclear Waste Transmutation
- Nuclear Medicine
- Main feature of n_TOF is the synthesis of extremely high instantaneous neutron flux and excellent energy resolution
- Unique facility for measurements of radioactive isotopes (maximize S/N)
 - Branch point isotopes (astrophysics)
 - Actinides (nuclear technology)

The n_TOF physics program: neutron-induced reaction measurements

hase 1 Phase 2 http://dx.doi.org/10.1051/epjconf/201714607003 http://www.nea.fr/dbdata/nds_jefreports/ http://dx.doi.org/10.1016/j.nds.2018.02.001 http://dx.doi.org/10.3327/jnst.48.1 https://twiki.cern.ch/NTOFPublic/DataDissemination

ND 2019 May 19-24 Beijing

Further listening: n_TOF related talks at ND2019

EAR1 data

- **R085** M. Bacak 233 U(n, γ /f)
- **R239** Victor Alcayne ²⁴⁴Cm/²⁴⁵Cm (n, γ)
- **R095** Cristian Massimi ¹⁵⁵Gd, ¹⁵⁷Gd (n, γ)
- R201 Simone Amaducci ²³⁵U (n,f)
- **R310** M. Mastromarco 154 GdU(n, γ)
- R246 Massimo Barbagallo ¹²C(n,p/d)
- **R087** J. Lerendegui-Marco 242 Pu(n, γ)
- **R083** Andreea Oprea ²⁴¹ Am (n, γ)
- R402 Alice Manna ²³⁵U(n,f)
- S409 Javier Preaena ³³S(n, α) ³⁰Si
- Veatriki Michalopoulou ²³⁰Th(n,f)
- Sebastian Urlass ¹⁶O(n,alpha)¹³C (Poster)

EAR2 data

R239	Victor Alcayne ²⁴⁴ Cm/ ²⁴⁵ Cm (n, γ)
S409	Javier Preaena ³³ S(n, $lpha$) ³⁰ Si
1258	Nikolay Sosnin ²³⁵ U(n,f)/ ²³⁹ Pu(n,f)
R270	A. Stamatopoulos ²³⁷ Np(n,f)
1268	Veatriki Michalopoulou ²³⁰ Th(n,f))
R269	Zinovia Eleme ²⁴¹ Am(n,f)

²³⁷Np(n,f) @ EAR2

Study of the neutron induced fission cross-section of ²³⁷Np at CERN's nTOF facility over a wide energy range

19.5 m vertical flight path

Samples from JRC-Geel

Fission fragment detection with Micromegas detectors

Interesting results in the MeV energy regime with high statistical accuracy

241Am(n,f) with Micromegas Detectors @ EAR2

- EAR2
- Detectors: Micromegas
- Target Samples \rightarrow 6 x ^{241}Am && Neutron flux monitor samples \rightarrow 2 x ^{235}U && 2 x ^{238}U

ND 2019 May 19-24 Beijing

E. Chiaver

³³S(n,α)³⁰Si: two measurements at n_TOF.

BNCT principle

High selectivity ¹⁰B-compounds \rightarrow 3.5:1 (tumour to healthy tissue rate)

MOTIVATION: ³³S as target in Neutron Capture Therapy for tumors growing to the skin.

BASEMENT:

Large resonance at 13.5 keV in the ${}^{33}S(n,\alpha)$ but discrepant data are available.

³⁵S has been selectively accumulated in mice in large concentrations (mg/g).

Natural sulphur nanoparticles are commercially available.

FIG. 8. *R*-matrix analysis from 124 to 132 keV. The n_TOF data (red points) are compared with the description of ORNL [5] (dashed green line), Geel [6] (blue line), and the present work (black line).

EAR1. We solved the discrepancy and we agreed with ORNL for the 13.5 keV resonance (the highest value of the resonance).

EAR2. The cross section has been measured for the first time below 10 keV and the 1/v behavior has been confirmed. MC simulations of the dose in tumor show that S-NCT is possible in one conventional irradiation as BNCT experimental treatments.

Beam

Nuclear Physics: nTOF

Example: Tracing the cosmological Lithium problem (CLiP)

The ${}^{7}Be(n,p){}^{7}Li$ results show that the reaction rate in BBN calculation has been slighly underestimated. However the correction is not sufficient to provide a viable solution to the problem,

The nTOF results can finally rule out neutron-induced reactions as a potential explanation of the CLiP, leaving all alternative physics and astronomical scenarios still open

L. Damone et al., Physical Review Letters 121, 042701 (2018)

²³³U α-ratio with fission tagging @ n_TOF

Total Absorption Calorimeter (TAC)

- 4π spherical array of BaF₂ crystals
- Sum energy *E*_{sum} and crystal multiplicity m_{cr}

Novel Flssion CHamber (FICH)

- Compact & simple ionization cells ε^{*}
- Fast signals for high α -count rates
- 14 high purity unsealed ²³³U deposits from JRC-Geel

3. Background subtraction

2. Total TAC response

²³⁰Th at EAR-1 and EAR-2 of n_TOF

- o ²³⁰Th is a natural but rare isotope
- \circ Plays an important role in the ²³²Th/²³³U fuel cycle
- $\circ~$ Is very interesting in the study of the fission process
- However the existing experimental data cover the energy range between 220 keV to 25 MeV with many discrepancies among them

Measurements at EAR-1 and EAR-2 of n_TOF with a setup based on Micromegas detectors to cover a **wide energy range** (meV up to a few hundred MeV)

EAR-1: High energy resolution to measure the high energy region EAR-2: High flux to measure below the fission threshold

Amplitude

EN 🗼 S T I

[4] J. Lerendegui-Marco, C. Guerrero et al., Phys. Rev. C (submitted 2019)

Measurement of the ²³⁵U(n,f) cross section relative to n-p scattering up to 1 GeV

EN STI

The ¹⁵⁴Gd neutron capture cross section measured at the CERN n_TOF facility

The ¹⁵²Gd and ¹⁵⁴Gd can be produced only via the s-process because they are shielded against the β -decay chains from the r-process region by the stable samarium isobars.

Author / library	MACS @ 30 keV (mb)
ENDF/B-VII (2011)	953.3 +/- 37.0
JENDL-4.0 (2010)	992
JEFF-3.1 (2005)	862
Wisshak (1995)	1028 +/- 12 → 1088
Beer (1988)	878 +/- 27
Shorin (1974)	1278 +/- 102 →1184

Although several experimental and theoretical values can be found in literature, MACS of ¹⁵⁴Gd calculated at 30 keV from previous results differs by more than 15%.

Measurements performed in 2017 @ n_TOF EAR1, flight path 184 m, with 4 liquid scintillator detectors

Measurement of ²³⁵U(n,f) Cross Section Below 150 keV

The 235 U(n,f) fission cross section was measured between two standards, thermal and 150 keV, with a new setup based on in-beam silicon detectors. 6 Li(n,t) and 10 B(n, α) have been used as references.

Simone Amaducci – ND2019 – Beijing 20-24 May 2019

Talk scheduled Wednesday 22th May 15:10 room 203

Nuclear facilities at JRC Geel (Jan Heyse 1080)

GELINA

neutron time-of-flight facility for high-resolution neutron measurements

MONNET tandem accelerator based fast neutron source

- ²⁰⁹Bi + n with SCK•CEN and JAEA
- Crit. Safety with ORNL
- ^{154,155,157}Gd + n Cristian Massimi R095
- ^{107,109}Ag RP < 1000 eV L. Salamon S097</p>
- ²⁴¹Am capture and transmission normalization free
- Neutron resonance and transmission analysis (NDA)
- Setup development for scattering and fission
- Neutron multiplicities and FF 239Pu(n,f)

New evaluation for ²⁰⁹Bi + n

¹⁰³Rh + n (SNF, criticality safety)

Measurements at GELINA

- Transmission at 10m and 50 m
- Capture at 12.5 m

Collaboration: Sungkyunkwan University, Suwon

See poster Dr. V. Chavan

Reporting of EXFOR data based on AGS INDC(EUR)-0033 🛞 IAEA Distr. G+J INDC International Nuclear Data Committee Results of Time-of-Flight Transmission Measurements for ¹⁰³Rh at a 10 m Station of GELINA Y. K. Kima, V. Chavana, C. Paradelab, G.Alaertsb, S. I. Baka, J. Heyseb, S. Kopeckyb, A. Opreac, P. Schillebeeckxb, R. Wynantsb and S. W. Honga ^a Department of Physics, Sungkyunkwan University, Suwon, Republic of Korea ^b European Commission Joint Research Centre, Geel, Belgium ^c Horia Hulubei National Institute of Physics and Nuclear Engineering, Magurele, Romania March 2019 IAEA Nuclear Data Section, Vienna International Centre, A-1400 Vienna, Austria

European Commission

Collaboration with ORNL (criticality safety, Burnup Credit)

Nuclide	Transmission	Capture		Status
^{nat} Ce	FP4 50m	FP14 60m	2014	EXFOR data produced.
51 V	FP4 50m	FP14 60m	2015	Data reduction finished; EXFOR in preparation
139 La	FP4 50m	FP14 60m	2017	Data reduction ongoing
¹⁴² Ce	FP4 50m	FP14 60m	2019	Experiments ongoing

Natural Cerium - Transmission

E_i (eV)	Γ_n^{old} (meV)	lold	Γ_n^{new} (meV)	lnew
1152.7	50000	0	50	1
1657	10000	0	10	1

Collaboration with INFN Bologna: ^{154,155,157}Gd + n

 (n,γ) measurements at nTOF (180 m) using ^{155,157}Gd enriched samples complemented by measurements at GELINA

- transmission at 10m

– capture at 12.5 m

using ^{155,157}Gd + ¹⁵⁴Gd enriched samples and special MgGd alloys

Table 2. reasones of the ed samples with uncertainties declared by the provider.					
Isotope	Abundance	% contamination	% main	Weight	Areal density
	%	of 155 or $^{157}\mathrm{Gd}$	contaminant	mg	atoms/barn $\times 10^{-8}$
$^{155}\mathrm{Gd}$	91.74 ± 0.18	1.14 ± 0.01	5.12 ± 0.18 ¹⁵⁶ Gd	100.6 ± 0.1	12440 ± 40
$^{155}\mathrm{Gd}$	91.74 ± 0.18	1.14 ± 0.01	$5.12\pm0.18\ ^{156}{\rm Gd}$	10.0 ± 0.1	1236 ± 12
$^{157}\mathrm{Gd}$	88.32 ± 0.01	0.29 ± 0.01	$9.10\pm0.01\ ^{158}{\rm Gd}$	191.6 ± 0.1	23390 ± 60
$^{157}\mathrm{Gd}$	88.32 ± 0.01	0.29 ± 0.01	9.10 ± 0.01 ¹⁵⁸ Gd	4.7 ± 0.1	574 ± 12

Table 2. Features of the Gd samples with uncertainties declared by the provider

Mastromarco et al. EPJA 55 (2019) 9

Collaboration with INFN Bologna: ^{154,155,157}Gd + n

Evaluation of ^{107,109}Ag resonance parameters < 1000 eV

- Transmission : 10 m
- Capture : 12.5 m

Table 1

Characteristics of metallic disc samples used for transmission (indicated with T) and capture (indicated with C) experiments. Areal densities of the samples were calculated from the measured weights and the areas of the samples.

Sample	Thickness [mm]	Diameter [mm]	Weight [g]	Area [cm ²]	Areal density [at/b]	Transmission/Capture
nat Ag	0.25	80	14.3653 (1)	50.3087 (4)	$\begin{array}{l} 1.59411 \times 10^{-3} \ (2) \\ 7.3646 \times 10^{-4} \ (1) \\ 3.7845 \times 10^{-4} \ (8) \\ 3.0259 \times 10^{-3} \ (1) \\ / \end{array}$	C
nat Ag	0.126	80	6.6366 (1)	50.3088 (3)		T, C
nat Ag	0.06	80	3.4056 (1)	50.2376 (89)		T, C
¹⁹⁷ Au	0.5	81	50.9234 (1)	51.4538 (22)		C
²⁰⁸ Pb	/	80	/	/		C

Inelastic scattering with GAINS & Grapheme Collaboration with CNRS-IPHC, HZDR, IFIN-HH, PTB

- Reaction mechanisms & nuclear structure from (n,xng): Maelle Kerveno R236
- Gamma production cross sections GAINS Overview: Alexandru Negret I075
- ⁵⁴Fe: 2+ to g.s. decay Adina Olacel R077
- ¹⁶O: example of 3- to g.s. decay Marian Boromiza R076
- ⁷Li: Roland Beyer R078
- New setups Markus Nyman I127

¹⁶O(n,n'g), Marian Bormiza, IFIN-HH (RO)

n+12C reactions from n on diamond Mitja Majerle, NPI Rez, CR

Deposited energy [MeV]

O(n,tot) – HZDR (CHANDA)

- Transmission station HZDR nELBE (see I240)
- JEFF-3.2, response folded (green); data (red)

Fission fragment properties, prompt fission neutrons & γ -rays

• Fission fragments by Twin Frisch-Gridded Ionization

- Fragment energy
- Fragment Masses 2E-technique
- Fission axis orientation

• Prompt fission neutrons

- 12 x Scintillators (NE213 equivalent)
- Energy : time-of-flight
- Prompt fission γ-rays
 - LaBr, CeBr scintillators

Position sensitive electrode

European Commission

Neutron multiplies and fission fragments in ²³⁹Pu(n,f) Alf Göök R259

- Measurements related to NEA High priority request (99H)
 - new $v_p(E_n)$ data in resonance neutron induced fission
 - Fluctuating $v_p(E_n)$ in resonance range
 - Fluctuating fragment Y(A,TKE)
- Experiment to investigate correlation $v_p(A,TKE)$ at GELINA

e.g. ²³⁵U(n,f)

