Progress on Nuclear data Measurements in China

Xichao Ruan

China Nuclear Data Center China Institute of Atomic Energy

Progress of ND measurements in the following institutes are collected

China Institute of Atomic Energy

Highlights in 2018

1. Measurement of (n, f) and $(n, 2 n)$ Cross Sections of Actinides with the Surrogate Capture Reaction Method
2. Measurements at CSNS

Surrogate Capture Reaction Method

$$
\sigma^{\mathrm{n}, \mathrm{f}}(E, \sqrt{ } \pi)=\sigma^{\mathrm{CN}}\left(E_{\mathrm{n}}, \sqrt{ } \pi\right) \times P_{\mathrm{f}}(E, \sqrt{ } \pi)
$$

^ Peripheral reactions, transfer or inelastic scattering like (t,pf), (d,pf), ($\left.\alpha, \alpha^{\prime} \mathrm{f}\right),\left({ }^{18} \mathrm{O},{ }^{16} \mathrm{Of}\right) \ldots$, are used as the surrogate reactions, where the angular momentum and parity $(J \pi)$ involved in CN are different to that of direct neutron reaction in general.
^ In most cases, ${ }^{\pi}$ plays a major role, which gives rise to the difficulty in theoretical correction.
^ Considering this, we propose the capture of light charge-particle ($\mathrm{p}, \mathrm{d}, \mathrm{t},{ }^{3} \mathrm{He}, \alpha \ldots$) as a surrogate reaction.

Example: ${ }^{236} \mathrm{U}(\alpha, 2 \mathrm{n}) \rightarrow{ }^{239} \mathrm{Pu}(\mathrm{n}, 2 \mathrm{n})$

$\boldsymbol{J} \pi$ difference

- J differences in n and α reactions are less than $2 \hbar$ in 2 n evaporation window
- π have little differences if J are similar for both capture reactions
- It reduces the difficulty in ${ }^{\pi}$ correlation

Test: ${ }^{232} \mathrm{Th}(\alpha, 2 \mathrm{n}) \rightarrow{ }^{235} \mathrm{U}(\mathrm{n}, 2 \mathrm{n})$

Experiments were performed at $\mathrm{HI}-13$ tandem accelerator at CIAE, Beijing.
Angular distributions of elastic scattering and fission were measured by Si detectors.
Energy range: $15-36 \mathrm{MeV}$, total of 15 points.

$\alpha+{ }^{232} \mathrm{Th}, E_{\mathrm{Lab}}=25 \mathrm{MeV}, \theta_{\mathrm{Lab}}=131.1^{\circ}$

Online energy spectrum

Angular Distributions

by the optical model

by the saddle-point transition-state model

Results of ${ }^{235} \mathrm{U}(\mathrm{n}, 2 \mathrm{n})$

$$
{ }^{232} \mathrm{Th}(\alpha, \mathrm{f}) \rightarrow{ }^{232} \mathrm{Th}(\alpha, 2 \mathrm{n}) \rightarrow{ }^{235} \mathrm{U}(\mathrm{n}, 2 \mathrm{n})
$$

${ }^{236} \mathrm{U}$ Targets

High purity ${ }^{236} \mathrm{U}$ (radionuclidic purity $>99.99 \%$) was electrodeposited on AI backing.

(6) $10 \mu \mathrm{~g} / \mathrm{cm}^{2} 236 \mathrm{U}+2 \mu \mathrm{~m}$ Al backing (2 pieces for online measurement)

- $1-2 \mu \mathrm{~g} / \mathrm{cm}^{2}{ }^{236} \mathrm{U}+2 \mu \mathrm{~m}$ Al backing (18 pieces for irradiation \& offline measurement)

Step 1: Online Measurements

Elastic \& fission - HI-13 tandem accelerator, R60 scattering

er
$E_{\text {beam }}\left({ }^{4} \mathrm{He}\right)=14,18-36 \mathrm{MeV}$ Total of 16 energy points Energy at 14 MeV for calibration

Fission Angular Distributions

saddle-point transition-state model:
$W(\theta) \propto \sum_{I=0}^{\infty} \frac{(2 I+1)^{2} T_{I} \exp \left[-\frac{\left(I+\frac{1}{2}\right)^{2} \sin ^{2} \theta}{4 K_{0}^{2}}\right] J_{0}\left[i \frac{\left(I+\frac{1}{2}\right)^{2} \sin ^{2} \theta}{4 K_{0}^{2}}\right]}{\operatorname{erf}\left[\frac{I+\frac{1}{2}}{\sqrt{2 K_{0}^{2}}}\right]}$

α Activities

α activities measurements (last 1-2 years)

$E_{\text {lab }}=18.98 \mathrm{MeV}$

32.01

- The α decays from ${ }^{238} \mathrm{Pu}$ are clearly identified.
- The ${ }^{238} \mathrm{Pu}$ yield increases with energy increasing.

${ }^{239} \mathrm{Pu}(\mathrm{n}, \mathrm{f}) \&(\mathrm{n}, 2 \mathrm{n})$

${ }^{236} \mathrm{U}(\alpha, \mathrm{f}) \&(\alpha, 2 \mathrm{n}) \rightarrow{ }^{239} \mathrm{Pu}(\mathrm{n}, \mathrm{f}) \&(\mathrm{n}, 2 \mathrm{n})$

\star Excitation functions of ${ }^{239} \mathrm{Pu}(\mathrm{n}, \mathrm{f}) \&(\mathrm{n}, 2 \mathrm{n})$ are successfully obtained by the SCRM.

2. Measurements at CSNS

1. (n, γ) measurement with C6D6 ${ }^{169} \mathrm{Tm},{ }^{93} \mathrm{Nb},{ }^{238} \mathrm{U}$ data collected
Data analysis undergoing.
2. Test measurement of $\mathrm{Fe}\left(n, n^{\prime} \gamma\right)$.

First HPGe experiment at CSNS

\checkmark ES\#2, Double bunch , February,2019.
\checkmark TOF to determine the neutron energy.
\checkmark CLOVER and LaBr3. 125°
\checkmark natFe target: $\Phi 40 \times 3 \mathrm{~mm}$.
\checkmark Relative to ${ }^{52} \mathrm{Cr}(\mathrm{n}, \mathrm{n} \mathbf{\prime} \mathrm{y})$.

\checkmark TOF spectrum.
\checkmark Gamma spectrum in [6400 ns, 6441 ns$]$
\checkmark For double bunch, need to unfold the TOF to
 obtain the neutron energy and corresponding cross section.

preliminary result !!!

\checkmark Compare the yield ratio of Fe -847keV and Cr -1434keV with the result of GELINA.
normalized yield ratio $=$ cross section ratio
\checkmark The agreement is acceptable.
\checkmark The ratio is consistent. The Shape is similar. \square
Neutron Energy / MeV

Outlook:
Improve the measurement at CSNS.

Peking University

Prof. Guohui Zhang ghzhang@pku.edu.cn

${ }^{6} \mathbf{L i}(n, t){ }^{4} \mathrm{He}$	$\begin{aligned} & 1.05,1.54,1.85,2.25, \\ & 2.67,3.67,4.42 \end{aligned}$	NSE 134 (3) (2000) 312-316 NSE 143(1) (2003) 86 89 NSE 153(1) (2006) 41-45 NIMA 566 (2006) 615-621
${ }^{10} \mathbf{B}(n, \alpha){ }^{7} \mathrm{Li}$	4.0, 5.0	ARI 66 (2008) 1427-1430
${ }^{10} \mathbf{B}(n, t 2 a)(n, \alpha)$	4.0, 4.5, 5.0	PRC 96, 044620 (2017) PRC 96, 044621 (2017)
${ }^{25} \mathbf{M g}(n, \alpha),\left(n, \alpha_{0}\right)$	4.0, 4.5, 5.0, 5.5, 6.0	PRC 98, 034605 (2018)
${ }^{39} \mathrm{~K} /{ }^{40} \mathbf{C a}(n, \alpha)$	4.5, 5.5, 6.5 / 5.0, 6.0	PRC, 61, 054607(2000) NSE 134(1) (2000) 89-96
${ }^{40} \mathbf{C a}\left(n, \alpha_{0}\right)\left(n, a_{12}\right)\left(n, \alpha_{3}\right.$ 45)	$4.0,4.5,5.0,5.5,6.0,6.5$	EPJA (2015) 51: 12
${ }^{54} \mathrm{Fe} /{ }^{56} \mathrm{Fe} /{ }^{57} \mathrm{Fe}(n, \alpha)$ ${ }^{54,56} \mathrm{Fe}(n, \alpha)$	$\begin{aligned} & 4.0,4.5,5.5,6.5 / 5.5,6.5 / \\ & 5.0,5.5,6.0,6.5 \\ & 5.57 .78 .59 .5 \quad 10.5 \end{aligned}$	$\begin{aligned} & \text { PRC 92, } 044601 \text { (2015) PRC 89, } 064607 \text { (2014) } \\ & \hline \text { PRC 99, } 024619(\underline{2019}) \\ & \hline \end{aligned}$
${ }^{58} \mathbf{N i}(n, \alpha)$	4.0, 4.5, 5.0	INDC(CPR)-034/L, 1995, 13, 1-9
${ }^{63} \mathbf{C u}(n, \alpha)$	5.0, 5.5, 6.0, 6.5	PRC 89, 064607 (2014)
${ }^{64} \mathbf{Z n}(n, \alpha){ }^{61} \mathrm{Ni}$	$\begin{aligned} & 2.54,4.00,5.50,5.03 \\ & 5.95 \end{aligned}$	NSE 156 (2007)115-119 NSE 160 (2008) 123-128
${ }^{67} \mathbf{Z n}(n, \alpha)\left(n, \alpha_{0}\right)$	4.0, 5.0, 6.0	PRC 82, 054619 (2010)
${ }^{95} \mathbf{M o}(n, \alpha)$	4.0, 5.0, 6.0	ARI 68 (2010) 180-183
${ }^{143} \mathbf{N d}(n, \alpha)$	4.0, 5.0, 6.0	PRC 80, 044602 (2009)
${ }^{147} \mathbf{S m}(n, \alpha)$	5.0, 6.0	PRC 80, 044602 (2009) ARI 67 (2009) 46-49
${ }^{149} \mathrm{Sm}(n, \alpha)$	$4.5,5.0,5.5,6.0,6.5$	PRC 82, 014601 (2010) PRL 107, 252502 (2011)

${ }^{56,54} \mathrm{Fe}(n, \alpha)^{53,51} \mathrm{Cr}$ Cross Sections in the MeV Region

- (n, α) reaction cross section measurement in the $5.0-11.0 \mathrm{MeV}$ region for 54 Fe and 56 Fe

${ }^{56,54} \mathrm{Fe}(n, \alpha){ }^{53,51} \mathrm{Cr}$ cross sections in the MeV region
Huaiyong Bai, ${ }^{1}$ Haoyu Jiang, ${ }^{1}$ Yi Lu, ${ }^{1}$ Zengqi Cui, ${ }^{1}$ Jinxiang Chen, ${ }^{1}$ Guohui Zhang, ${ }^{1, *}$ Yu. M. Gledenov, ${ }^{2}$ M. V. Sedysheva, ${ }^{2}$ G. Khuukhenkhuu, ${ }^{3}$ Xichao Ruan, ${ }^{4}$ Hanxiong Huang, ${ }^{4}$ Jie Ren, ${ }^{4}$ and Qiwen Fan ${ }^{4}$
${ }^{1}$ State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing 100871, China ${ }^{2}$ Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia
${ }^{3}$ Nuclear Research Centre, National University of Mongolia, Ulaanbaatar, Mongolia
${ }^{4}$ China Institute of Atomic Energy, Beijing 102413, China

A shoulder was observed around 10 MeV , the reason is unknown

the $1^{\text {st }}$ measurement at CSNS, Back-n: ${ }^{6} \mathbf{L i}(n, t)^{4} \mathbf{H e}$

Three kinds of detectors: Silicon, $\Delta \mathrm{E}-\mathrm{E}, \mathrm{GIC}$
$8+7=15$ silicon detectors $\left(19.2^{\circ} \sim 160.8^{\circ}\right)$

The detector setup

LPDA (Light-charged Particle Detector Array)

${ }^{6} \mathrm{Li}(\boldsymbol{n}, \underline{t})^{4} \mathrm{He}$

Systematic results (from 1 eV to 3 MeV)

$\underline{80}$ energies $\left(E_{\mathrm{n}}\right) * \underline{15}$ angles $\left(\theta_{\text {Lab }}\right)=$ 1200
> At each angle position, 80 differential cross sections are obtained
$>$ At each neutron energy, 15 angular differential cross sections are obtained
$>$ R-matrix analysis are performed("Chen")
Differential cross sections for tritons at $\mathbf{1 9 . 2}{ }^{\mathbf{0}}$
in the lab. system
No previous DA measurement below $E_{\mathrm{n}}=0.1 \mathrm{MeV}$

Selected angular differential cross sections (15/80)

Differential cross sections of ${ }^{6} \mathrm{Li}(n, \underline{t})$ change systematically

${ }^{10} \mathrm{~B}(n, \underline{a})^{7} \mathrm{Li}$ reaction

the $2^{\text {nd }}$ measurement at CSNS, Back-n

- 2018 06-07
- Double ${ }^{10} \mathrm{~B}$ sample
${ }^{10} \mathrm{~B} 90 \%, \sim 85 \mu \mathrm{~g} / \mathrm{cm}^{2}$ each, $\phi 50 \mathrm{~mm}$
- Beam 357 h ($\phi 60 \mathrm{~mm}$)
foreground : background ~ 2:1
- 20 kW Recorded Data 8TB

Details are shown in Haoyu Jiang's
Presentation (R233)
'Measurements of differential and angle-integrated cross sections for the ${ }^{10} \mathrm{~B}(n, a)^{7} \mathrm{Li}$ eaction in the neutron energy ange of $1 \mathrm{eV}<E_{\mathrm{n}}<2.5 \mathrm{MeV}$ "

${ }^{10} \mathrm{~B}$ samples

LPDA (15 silicon detectors $19.2^{\circ} \sim 160.8^{\circ}$)

${ }^{10} \mathbf{B}(n, \underline{a})^{7} \mathbf{L i}$

Cross sections

ADS related nuclear data measurements at IMP,CAS (2018)

Dr. Zhiqiang Chen zqchen@impcas.ac.cn

ADS Nuclear Data Laboratory Institute of Modern Physics, Chinese Academy of sciences (IMP,CAS)

2018:

- "26.7 MeV/u ${ }^{4} \mathrm{He}+\mathrm{Be}, \mathrm{C}, \mathrm{W}, \mathrm{Pb}$ " experiments for the neutron energy spectrum measurements and angular distribution. (The primary ions were stopped in the targets. (November 2018)

2019:

- " $25-30 \mathrm{MeV}{ }^{4} \mathrm{He}+\mathrm{Bi}^{\text {" }}$ experiments for isotope production. (January 2019)
- "80.5 MeV/u ${ }^{12} \mathrm{C}+\mathrm{Be}, \mathrm{C}, \mathrm{W}, \mathrm{Pb} "$ for the neutron energy spectrum measurements and angular distribution experiments. (The primary ions were stopped in the targets) (March 2019)
- "80.5 MeV/u ${ }^{12} \mathrm{C}+\mathrm{C}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Au}$ " (thin target) for the light charged particles measurements. (March 2019)

${ }^{4} \mathrm{He}+{ }^{209} \mathrm{Bi} \rightarrow{ }^{211} \mathrm{At}$ experiments

- ${ }^{211} \mathrm{At}$ can be used in alpha particle emitting targeted radiotherapy.
- ${ }^{211}$ At production experiments have been done based on ADS superconducting LINAC at IMP.

${ }^{4} \mathrm{He}+{ }^{209} \mathrm{Bi} \rightarrow{ }^{211} \mathrm{At}$ cross section measuremens

- 25-27 MeV ${ }^{4} \mathrm{He}+{ }^{209} \mathrm{Bi}$ experiments have been done.

Fission cross section measurement at CSNS by China Academy of Engineering Physics

Dr. Yiwei Yang
winfield1920@126.com

Fast Ionization Chamber for Fission Cross Section Measurement (FIXM)

- Ionization chamber: simple, stable, mature and fast enough for current operation mode of CSNS.
- Electrons drift velocity ($\sim 60 \mathrm{~mm} / \mu \mathrm{s}$), cross the $5-\mathrm{mm}$-gap between the electrodes in $\sim 80 \mathrm{~ns}$.

Basic principle diagram

Fission Samples

- Fissile material was electroplated on metal backing (Al or Stainless steel)
- Abundance: ${ }^{235 \mathrm{U}}>99.98 \%$), 238 U ($>99.99 \%$), 236 U ($(999.9 \%$), 232 Th (>99.9\%)

- Characterization:
- Mass: small solid angle α-particle counting;
- Uniformity: a-particle imaging plate;
- Diameter: edge recognition of the α-particle image;

Cross-section ratio between U-238/235

- Cross-section ratio given by ENDF/B-VIII. 0 is $\sim 1.5 \%$ (in average) different from measurement
- The difference is less than 5% in effective energy range ($1-20 \mathrm{MeV}$)
- The measurement uncertainty of the ratio is around 3%.
- The FIXM did a good job!
- The steep cross section and poor energy resolution in MeVs energy range led a worse result.

Thants you for jow atcention!

