

Progress on Nuclear data Measurements in China

Xíchao Ruan

China Nuclear Data Center China Institute of Atomic Energy

WPEC-2019, June 24-28, 2019, Paris, France

Progress of ND measurements in the following institutes are collected

China Institute of Atomic Energy

Highlights in 2018

- Measurement of (n,f) and (n,2n) Cross Sections of Actinides with the Surrogate Capture Reaction Method
- 2. Measurements at CSNS

Surrogate Capture Reaction Method

$\sigma^{n,f}(\boldsymbol{E},\boldsymbol{J}^{\pi}) = \sigma^{CN}(\boldsymbol{E}_n,\boldsymbol{J}^{\pi}) \times \boldsymbol{P}_f(\boldsymbol{E},\boldsymbol{J}^{\pi})$

- Peripheral reactions, transfer or inelastic scattering like (t,pf), (d,pf), (α,α'f), (¹⁸O,¹⁶Of) ..., are used as the surrogate reactions, where the angular momentum and parity (*J*^π) involved in CN are different to that of direct neutron reaction in general.
- ▲ In most cases, J^π plays a major role, which gives rise to the difficulty in theoretical correction.
- Considering this, we propose the capture of light charge-particle (p, d, t, ³He, α ...) as a surrogate reaction.

Example: ${}^{236}U(\alpha,2n) \rightarrow {}^{239}Pu(n,2n)$

J^π difference

- J differences in n and α reactions are less than $2\hbar$ in 2n evaporation window
 - π have little differences if J are similar for both capture reactions
 - It reduces the difficulty in J^{π} correlation

Test: ²³²Th(α ,2n) \rightarrow ²³⁵U(n,2n)

Experiments were performed at HI-13 tandem accelerator at CIAE, Beijing.
 Angular distributions of elastic scattering and fission were measured by Si detectors.
 Energy range: 15 – 36 MeV, total of 15 points.

Angular Distributions

model

the saddle-point transition-sta model

Results of ²³⁵U(n,2n)

²³²Th(α ,f) \rightarrow ²³²Th(α ,2n) \rightarrow ²³⁵U(n,2n)

²³⁶U Targets

High purity ²³⁶U (radionuclidic purity > 99.99%) was electrodeposited on AI backing.

The mass of the

Step 1: Online Measurements

Fission Angular Distributions

saddle-point transition-state model:

$$W(\theta) \propto \sum_{I=0}^{\infty} \frac{(2I+1)^2 T_I \exp\left[-\frac{(I+\frac{1}{2})^2 \sin^2 \theta}{4K_0^2}\right] J_0\left[i\frac{(I+\frac{1}{2})^2 \sin^2 \theta}{4K_0^2}\right]}{\exp\left[\frac{I+\frac{1}{2}}{\sqrt{2K_0^2}}\right]}$$

α Activities

α activities measurements (last 1-2 years)

- The α decays from ²³⁸Pu are clearly identified.
- The ²³⁸Pu yield increases with energy increasing.

²³⁹Pu(n,f) & (n,2n)

²³⁶U(α ,f) & (α ,2n) \rightarrow ²³⁹Pu(n,f) & (n,2n)

★ Excitation functions of 239 Pu(n,f) &(n,2n) are successfully obtained by the SCRM.

2. Measurements at CSNS

(n,γ) measurement with C6D6
 ¹⁶⁹Tm, ⁹³Nb, ²³⁸U data collected
 Data analysis undergoing.
 Test measurement of Fe(n,n'γ).

First HPGe experiment at CSNS

- ES#2, Double bunch , February,2019.
- ✓ TOF to determine the neutron energy.
- ✓ CLOVER and LaBr3. 125°
- ^{nat}Fe target : Φ40×3mm.
- Relative to ${}^{52}Cr(n,n'\gamma)$.

- ✓ TOF spectrum.
- Gamma spectrum in [6400 ns , 6441 ns]
- For double bunch, need to unfold the TOF to
 - obtain the neutron energy and corresponding cross section.

Double Bunch

Time (ns)

2000

1600

400

preliminary result !!!

 Compare the yield ratio of Fe-847keV and Cr-1434keV with the result of GELINA.

normalized yield ratio = cross section ratio

The agreement is acceptable.

Peking University

Prof. Guohui Zhang ghzhang@pku.edu.cn

Reaction	E _n (MeV)	Publication
⁶Li (<i>n</i> , <i>t</i>)⁴He	1.05, 1.54, 1.85, 2.25, 2.67, 3.67, 4.42	NSE 134 (3) (2000) 312-316 NSE 143(1) (2003) 86- 89
		NSE 153(1) (2006) 41-45 NIMA 566 (2006) 615–621
¹⁰ Β (<i>n</i> , <i>α</i>) ⁷ Li	4.0, 5.0	ARI 66 (2008) 1427–1430
¹⁰ B (<i>n</i> , <i>t</i> 2 <i>a</i>) (<i>n</i> , <i>α</i>)	4.0, 4.5, 5.0	PRC 96, <u>044620</u> (2017) PRC 96, <u>044621</u> (2017)
²⁵ Mg (<i>n</i> , α), (<i>n</i> , α_0)	4.0, 4.5, 5.0, 5.5, 6.0	PRC 98, 034605 (2018)
³⁹ Κ / ⁴⁰ Ca (<i>n</i> ,α)	4.5, 5.5, 6.5 / 5.0, 6.0	PRC , 61, 054607(2000) NSE 134(1) (2000) 89-96
⁴⁰ Ca $(n, \alpha_0)(n, a_{12})(n, \alpha_3)$ ₄₅)	4.0, 4.5, 5.0, 5.5, 6.0, 6.5	EPJA (2015) 51: 12
⁵⁴ Fe/ ⁵⁶ Fe/ ⁵⁷ Fe(<i>n</i> ,α) ^{54,56} Fe(<i>n</i> ,α)	4.0, 4.5, 5.5, 6.5/5.5, 6.5/ 5.0, 5.5, 6.0, 6.5 5.5 7.7 8.5 9.5 10.5	PRC 92, 044601 (2015) PRC 89, 064607 (2014) PRC 99, 024619 (2019)
⁵⁸ Ni(<i>n</i> , <i>α</i>)	4.0, 4.5, 5.0	INDC(CPR)-034/L, 1995, 13, 1-9
⁶³ Cu(<i>n</i> , α)	5.0, 5.5, 6.0, 6.5	PRC 89, 064607 (2014)
⁶⁴ Ζn(<i>n</i> ,α) ⁶¹ Ni	2.54, 4.00, 5.50, 5.03, 5.95	NSE 156 (2007)115-119 NSE 160 (2008) 123-128
⁶⁷ Zn (n, α) (n, α_0)	4.0, 5.0, 6.0	PRC 82, 054619 (2010)
⁹⁵ Μο(<i>n</i> , <i>α</i>)	4.0, 5.0, 6.0	ARI 68 (2010) 180–183
¹⁴³ Nd(<i>n</i> , <i>α</i>)	4.0, 5.0, 6.0	PRC 80, 044602 (2009)
¹⁴⁷ Sm(<i>n</i> ,α)	5.0, 6.0	PRC 80, 044602 (2009) ARI 67 (2009) 46–49
¹⁴⁹ Sm(<i>n</i> ,α)	4.5, 5.0, 5.5, 6.0, 6.5	PRC 82, 014601 (2010) PRL 107, 252502 (2011)
		19

56,54 Fe(*n*, α) 53,51 Cr Cross Sections in the MeV Region

 (n,α) reaction cross section measurement in the 5.0-11.0 MeV region for 54Fe and 56Fe

56,54 Fe (n, α) 53,51 Cr cross sections in the MeV region

Huaiyong Bai,¹ Haoyu Jiang,¹ Yi Lu,¹ Zengqi Cui,¹ Jinxiang Chen,¹ Guohui Zhang,^{1,*} Yu. M. Gledenov,² M. V. Sedysheva,²

G. Khuukhenkhuu,³ Xichao Ruan,⁴ Hanxiong Huang,⁴ Jie Ren,⁴ and Oiwen Fan⁴

¹State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing 100871, China

²Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia

³Nuclear Research Centre, National University of Mongolia, Ulaanbaatar, Mongolia

⁴China Institute of Atomic Energy, Beijing 102413, China

A shoulder was observed around 10 MeV, the reason is unknown

the 1st measurement at CSNS, Back-n: ${}^{6}Li(n, t){}^{4}He$

Three kinds of detectors: Silicon, ΔE -E, GIC

8 + 7 = 15 silicon detectors (19.2° ~ 160.8°)

The detector setup

The ⁶LiF sample

LPDA (Light-charged Particle Detector Array)

$^{6}\text{Li}(n, \underline{t})^{4}\text{He}$

Systematic <u>results</u> (from 1 eV to 3 MeV)

<u>80</u> energies $(E_n) * \underline{15}$ angles $(\theta_{Lab}) = 1200$

- At each angle position, 80 differential cross sections are obtained
- At each neutron energy, 15 angular differential cross sections are obtained
- <u>R-matrix analysis are performed("Chen")</u>

No previous DA measurement below $E_n = 0.1 \text{ MeV}$

Differential cross sections of ${}^{6}\text{Li}(n, \underline{t})$ change systematically 120 $E_{\rm II} = 5.01 \times 10^{-2} { m MeV}$ 12000 111 II. do/dQ (mb/sr) $E_{\rm n} = 1.00 \times 10^{-6} {\rm MeV}$ $d\sigma/d\Omega \,(mb/sr)$ do/dQ (mb/sr) dø/dØ (mb/sr) $E_{\rm II} = 1.00 \times 10^{-4} \text{ MeV}$ 300 900 $E_{\rm n} = 1.00 \times 10^{-3} {\rm MeV}$ 80.00 ENDF/B-VIII.0 JEFF-3.3 ENDF/B-VIII.0 Chen JEFF-3.3 200 ENDF/B-VIII.0 $E_{\rm n} = 1.00 \times 10^{-2} \,{\rm MeV}$ 600 ENDF/B-VIII.9 Chen Present JEFE-3.3 Chen 4000 INDF/P VIII.0 Chan JEFF-3.3 300 100 Present Clien Present 120 150 120 150 180 150 180 30 90 150 180 120 120 120 150 180 θ_{Lab} (°) θ_{Lab} (°) θ_{Lab} (°) θ_{Lab} (°) θ_{Lab} (°) ENDF/B-VIII.0 ENDF/B-VIII.0 ENDF/B-VIII.0 ENDF/B-VIII.0 150 $E_{\rm II} = 1.62 \times 10^{-1} \, {\rm MeV}$ ENDF/B-VIII.0 JEFF-3.3 200 IEFE-3.3 IFFE-3 3 JEFF-3.3 JEFF-3.3 Chen Chen Chen Chen Enem Devlin (2007) (0.23 Me√) Devlin (2007) (6.24 MeV) Overiev (19.4) (0.24 MeV) Clien Devlin (2007) (0.20 MeV) Overley (1974) (0.10 MeV) Devlin (2007) (0.49 MeV) Devlin (2007) (0.11 Me /) do/dQ (mb/sr) Sr) Pursent do/dQ (mb/sr) dQ (mb/sr) Devlin (2007) (0.50 MeV) Overley (1974) (0.40 MeV) Present 150 Overley (19 14) (0.22 MeV) Devlin (2007) (0.47 MeV) da/dΩ (mb/ $E_{\rm H} = 1.00 \times 10^{-1} {\rm MeV}$ 400 Present Ove ley (1974) (0.50 MeV) Bame (1957) (0.20 MeV) Exclination (1953) (0.20 MeV 100 6 20 200 50 $E_{\rm n} = 4.83 \times 10^{-1} {\rm MeV}$ $E_{\rm n} = 2.07 \times 10^{-1} \, {\rm MeV}$ 120 150 180 120 150 180 120 150 150 180 60 90 180 60 120 120 150 θ_{Lab} (°) θ_{Lab} (°) θ_{Lab} (°) θ_{Lab} (°) θ_{Lab} (°)

Selected angular differential cross sections (15/80)

do/dQ (mb/sr)

 $d\sigma/d\Omega \,(mb/sr)$

${}^{10}B(n,\underline{a})^{7}Li$ reaction

the 2nd measurement at CSNS, Back-n

- 2018 06-07
- Double ^{10}B sample ^{10}B 90%, ~85 $\mu g/cm^2$ each, $\phi 50$ mm
- Beam 357 h (\u00f660mm)
 foreground : background ~ 2:1
- 20 kW Recorded Data 8TB

Details are shown in <u>Haoyu Jiang</u>'s

Presentation (R233) "Measurements of differential and angle-integrated cross sections for the ${}^{10}B(n,\alpha){}^{7}Li$ reaction in the neutron energy ange of 1 eV < E_n < 2.5 MeV"

¹⁰B samples

LPDA (15 silicon detectors $19.2^{\circ} \sim 160.8^{\circ}$)

 $^{10}B(n,\underline{a})^{7}Li$

ADS related nuclear data measurements at IMP,CAS (2018)

Dr. Zhiqiang Chen zqchen@impcas.ac.cn

ADS Nuclear Data Laboratory Institute of Modern Physics, Chinese Academy of sciences (IMP,CAS)

2018:

 "26.7 MeV/u ⁴He + Be, C, W, Pb" experiments for the neutron energy spectrum measurements and angular distribution. (The primary ions were stopped in the targets. (November 2018)

2019:

- "25-30 MeV ⁴He + Bi" experiments for isotope production. (January 2019)
- "80.5 MeV/u ¹²C + Be, C, W, Pb" for the neutron energy spectrum measurements and angular distribution experiments. (The primary ions were stopped in the targets) (March 2019)
 "80.5 MeV/u ¹²C + C, Cu, Pb, Au" (thin target) for the light charged particles measurements. (March 2019)

⁴He+²⁰⁹Bi→ ²¹¹At experiments

- ²¹¹At can be used in alpha particle emitting targeted radiotherapy.
 - ²¹¹At production experiments have been done based on ADS superconducting LINAC at IMP.

⁴He+²⁰⁹Bi→ ²¹¹At cross section measuremens

• 25-27 MeV ⁴He+²⁰⁹Bi experiments have been done.

Fission cross section measurement at CSNS by China Academy of Engineering Physics

Dr. Yiwei Yang winfield1920@126.com

Fast Ionization Chamber for Fission Cross Section Measurement (FIXM)

- Ionization chamber: simple, stable, mature and fast enough for current operation mode of CSNS.
- Electrons drift velocity (~60 mm/µs), cross the 5-mm-gap between the electrodes in ~80 ns.

Basic principle diagram

Fission Samples

- Fissile material was electroplated on metal backing (Al or Stainless steel)
- Abundance: ²³⁵U >99.98%), ²³⁸U (>99.99%), ²³⁶U (>99.9%), ²³²Th (>99.9%)

- Characterization:
 - Mass: small solid angle α -particle counting;
 - Uniformity: α-particle imaging plate;
 - Diameter: edge recognition of the α-particle image;

Cross-section ratio between U-238/235

- Cross-section ratio given by ENDF/B-VIII.0 is ~1.5% (in average) different from measurement
- The difference is less than 5% in effective energy range (1-20 MeV)
- The measurement uncertainty of the ratio is around 3%.
 - The FIXM did a good job!
- The steep cross section and poor energy resolution in MeVs energy range led a worse result.

Thank you for your attention ?