

Report on Nuclear Data Section activities at IAEA

Arjan Koning

Head of Nuclear Data Section
Division of Physical and Chemical Sciences NAPC
Department for Nuclear Sciences and Applications
IAEA, Vienna

WPEC Meeting, June 27-28 2018, NEA, Paris

Nuclear Reaction Data Centres (NRDC)

13 centres from 8 countries and 2 international organisations

EXFOR: Extra effort in FY compilation

From Mills' list

Statistics of the completeness

Start to compile by the NRDC network.

Area	E-R's list	Already in EXFOR	New entry	Another action	No action
1 United States	610	413	68	41	88
2 OECD countries	303	171	83	I 14 I	35
3 Others	155	103	24	81	20
4 Former Soviet Union countries	91	69	15	3	4
Not specified*	443				443
<u>Total</u>	1602**	756	190	66	590
Area	Mills' list	Already in EXFOR	New entry	Another action	No action
1 United States	321	248	26	17	30
2 OECD countries	149	70	63	9	7
3 Others	82	53	22	3	4
4 Former Soviet Union countries	73	37	28	5	3
Not specified*	20			i	20
Total	645	409	139	34	64

*Not specified due to private communications, Ph.D. theses, or classified reports. Also includes under checking.

**Only 924 articles are referred in the numerical data table used in the evaluation of ENDF/B-VI.

NSR (done by NNDC)

new entry 212

44%

Including neutron-, photoand spontaneous- fission

From: Shin Okumura

Nuclear Structure and Decay Data O Years

ICTP-IAEA Workshop on NSDD, 15-26 Oct. 2018

IAEA Neutron data standards

Available online at www.sciencedirect.com

ScienceDirect

Nuclear Data Sheets 148 (2018) 143-188

Nuclear Data Sheets

www.elsevier.com/locate/nds

Evaluation of the Neutron Data Standards

A.D. Carlson, ^{1,*} V.G. Pronyaev, ² R. Capote, ³ G.M. Hale, ⁴ Z.-P. Chen, ⁵ I. Duran, ⁶ F.-J. Hambsch, ⁷ S. Kunieda, W. Mannhart, B. Marcinkevicius, R.O. Nelson, D. Neudecker, G. Noguere, M. Paris, A. R.O. Nelson, D. Neudecker, G. Noguere, M. Paris, G. Noguere, D. Neudecker, D. Neudecker, G. Noguere, D. Neudecker, D. Neudecker, G. Noguere, D. Neudecker, S.P. Simakov, ¹² P. Schillebeeckx, ⁷ D.L. Smith, ¹³ X. Tao, ¹⁴ A. Trkov, ³ A. Wallner, ^{15, 16} and W. Wang ¹⁴ National Institute of Standards and Technology, 100 Bureau Drive, Stop 8463, Gaithersburg, MD 20899-8463, USA ²PI Atomstandart, State Corporation Rosatom, 117342, Moscow, Russia ³NAPC-Nuclear Data Section, International Atomic Energy Agency, Vienna, Austria ⁴Los Alamos National Laboratory, Los Alamos, NM 87545, USA ⁵Tsinghua University, Beijing, 100084, China ⁶Universidad de Santiago de Compostela, Spain ⁷EC-JRC-Directorate G. Unit G.2. B-2440 Geel. Belgium ⁸ Japan Atomic Energy Agency, Nuclear Data Center, Ibaraki 319-1195, Japan ⁹Physikalisch-Technische Bundesanstalt, Org. 6.4, 38116 Braunschweig, Germany ¹⁰ Uppsala University, Uppsala, Sweden ¹¹SPRC/LEPh, CEA Cadarache, 13108 Saint Paul Les Durance, France ¹²Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen, Germany ¹³ Argonne National Laboratory, Argonne, IL 60439, USA ¹⁴China Nuclear Data Center (CNDC), China Institute of Atomic Energy, Beijing, China ¹⁵ Vera Laboratory, Faculty of Physics, University of Vienna, A-1090 Vienna, Austria ¹⁶Dept. of Nuclear Physics, The Australian National University, Canberra ACT 0200, Australia (Received 3 September 2017; revised received 30 October and 12 November 2017; accepted 20 November 2017)

With the need for improving existing nuclear data evaluations, (e.g., ENDF/B-VIII.0 and JEFF-3.3 releases) the first step was to evaluate the standards for use in such a library. This new standards evaluation made use of improved experimental data and some developments in the methodology of analysis and evaluation. In addition to the work on the traditional standards, this work produced the

Ongoing: Consultancy meetings on Uncertainty quantification for Standards

Radiation shielding Dosimetry

Nuclear Structure Nuclear Astrophysics

Photonuclear Cross Sections

Photon
Strength
Functions

Reactor operation & safety

Nuclear waste management

security

Updating the Photonuclear Data Library & Generating Reference Database for Photon Strength Functions (2016-2019)

New results for ²⁰⁹Bi(γ,xn)

New data: A.I. Gheorghe+ (2017)

New IAEA Photonuclear Data Library

- 200 nuclides incl. for medical isotope production
- Energies up to 200 MeV
- New GDR parameters
- New evaluation methods improved modelling
- Available in ENDF-6 format and user-friendly interface
- Publication in preparation

Y.-S. Cho S370 KAERI

D. Filipescu, IFIN-HH

I. Gheorghe

N. Iwamoto JAEA

X. Ruirui, CNDC

X. Tao *R172*

V. Varlamov Moscow University

Review: R. Capote

T. Kawano

Y-O. Lee

O.lwamoto

Final output

Eur. Phys. J. A manuscript No. (will be inserted by the editor)

Reference Database for Photon Strength Functions

```
S. Goriely <sup>1</sup>, P. Dimitriou <sup>2</sup>, M. Wiedeking <sup>3</sup>, T. Belgya <sup>4</sup>, R. Firestone <sup>5</sup>, J. Kopecky <sup>7</sup>, M. Krtička <sup>8</sup>, V. Plujko <sup>9</sup>, R. Schwengner <sup>10</sup>, S. Siem <sup>11</sup>, H. Utsunomiya <sup>12</sup>, S. Hilaire <sup>13</sup>, S. Péru <sup>13</sup>, Y. S. Cho <sup>16</sup>, D. M. Filipescu <sup>15</sup>, N. Iwamoto <sup>16</sup>, T. Kawano <sup>6</sup>, V. Varlamov <sup>18</sup>, R. Xu <sup>17</sup>
```

All the data will be made available from an online interactive database

Ongoing project

- R-matrix theory: theory to describe individual resonances in the scattering of A+B and the nonresonant background between them
- IAEA Project on inter-comparison of R-matrix codes
 - (2015-present): verify codes, compare fit procedures, validate R-matrix data fits and perform evaluations
- Codes: AZURE2, AMUR, EDA, RAC, SFRESCOX, SAMMY
- Verification has concluded (European Physical Journal A, in press) – next step is comparison of evaluations

New CRP (2019-): Updating Fission Yield Data for Applications

- Objective: improve existing evaluated Fission Product Yields (FPY)
- Scope:
 - Compilation of all new FFY and FPY experimental data
 - Improve systematics and models
 - Incorporate new knowledge in FPY evaluations: correct errors and inconsistencies, update evaluations, provide reliable estimate of uncertainties
 - Agree on treatment of covariances, provide FPY covariance data and propose suitable format for inclusion in ENDF-6
 - Validation of new evaluations
- Participant countries: Belgium, China, Finland, France, Germany, India, Japan, Russia, Sweden, UK, USA

Positron Emitters

K. Gul et al., IAEA TECDOC 1211, Vienna, 2001 F. T. Tarkanyi et al., J. Radioanalytical and Nucl. Chem. (2019) 319. 533-666

$11_{ m C}$	$52_{ m Mn}$	$68_{\mathbf{Ga}}$	$82_{\mathbf{Rb}}$	118 _{Sb}
$^{14}{ m N}({ m p},{ m \alpha})^{11}{ m C}$	52 Cr(p,n) 52 Mn	$^{68}Zn(p,n)^{68}Ga$	$^{\text{nat}}\text{Rb}(p,x)^{82}\text{Sr}$	$^{115}{\rm Sn}(\alpha, n)^{118}{\rm Te}$
$13_{ m N}$	$^{52}Cr(d,2n)^{52}Mn$	65 Cu(α ,n) 68 Ga	85 Rb(p,4n) 82 Sr	$^{116}{\rm Sn}(\alpha,2n)^{118}{\rm Te}$
$^{16}{\rm O}(p,\alpha)^{13}{\rm N}$	55 _{Co}	$^{nat}Ga(p,x)^{68}Ge \\$	$86_{ extbf{Y}}$	$^{\mathrm{nat}}\mathrm{Sb}(p,x)^{118}\mathrm{Te}$
15 _O	$^{58}\mathrm{Ni}(p,\alpha)^{55}\mathrm{Co}$	⁶⁹ Ga(p,2n) ⁶⁸ Ge	86 Sr(p,n) 86 Y	$^{nat}Sb(d,x)^{118}Te$
$^{15}N(p,n)^{15}O$	54 Fe(d,n) 55 Co	$72_{ extbf{As}}$	88Sr(p,3n)86Y	$\mathbf{120_{I}}$
$^{14}N(d,n)^{150}$	⁵⁶ Fe(p,2n) ⁵⁵ Co	75 As(p,4n) 72 Se	85 Rb(α ,3n) 86 Y	$^{120}{\rm Te}(p,n)^{120}{\rm I}$
18 _F	61 _{Cu}	$^{\text{nat}}\text{Br}(p,x)^{72}\text{Se}$	$89_{\mathbf{Zr}}$	$^{122}\text{Te}(p,3n)^{120}\text{I}$
$^{18}O(p,n)^{18}F$	$^{61}\mathrm{Ni}(p,n)^{61}\mathrm{Cu}$	$^{\text{nat}}\text{Ge}(p,x)^{72}\text{As}$	$^{89}Y(p,n)^{89}Zr$	$122_{ m I}$
$^{\rm nat}{ m Ne}({ m d},{ m x})^{18}{ m F}$	60 Ni(d,n) 61 Cu	$^{\text{nat}}\text{Ge}(d,x)^{72}\text{As}$	89Y(d,2n)89Zr	124 Xe(p,x) 122 Xe
44_{Sc}	$^{64}Zn(p,\alpha)^{61}Cu$	$73_{\mathbf{Se}}$	$90_{ ext{Nb}}$	$^{127}I(p,6n)^{122}Xe$
44 Ca(p,n) 44 Sc	62_{Cu}	75 As(p,3n) 73 Se	$^{93}\mathrm{Nb}(p,x)^{90}\mathrm{Nb}$	$^{127}I(d,7n)^{122}Xe$
⁴⁴ Ca(d,2n) ⁴⁴ Sc	63 Cu(p,2n) 62 Zn	72 Ge(α ,3n) 73 Se	$^{89}\mathrm{Y}(\alpha,3n)^{90}\mathrm{Nb}$	128_{Cs}
43 Ca(d,n) 44 Sc	63 Cu(d,3n) 62 Zn	$^{76}{ m Br}$	$94 m_{Tc}$	¹³³ Cs(p,6n) ¹²⁸ Ba
⁴⁵ Sc(p,2n) ⁴⁴ Ti	$^{nat}\mathrm{Ni}(\alpha,x)^{62}Zn$	76 Se(p,n) 76 Br	$^{92}\mathrm{Mo}(\alpha,x)^{94m}\mathrm{Tc}$	$140_{\hbox{\bf Pr}}$
⁴⁵ Sc(d,3n) ⁴⁴ Ti	62 Ni(p,n) 62 Cu	⁷⁷ Se(p,2n) ⁷⁶ Br	$^{94}{ m Mo}(p,n)^{94}{ m mTc}$	¹⁴¹ Pr(p,2n) ¹⁴⁰ Nd
$52 m_{ ext{Mn}}$	62 Ni(d,2n) 62 Cu	75 As(α ,3n) 76 Br	$110 m_{ ext{In}}$	$^{141}Pr(d,3n)^{140}Nd$
$^{\mathrm{nat}}\mathrm{Ni}(p_{*}x)^{52}\mathrm{Fe}$	$66_{\mathbf{Ga}}$	$82m_{ m Rb}$	$^{\mathrm{nat}}\mathrm{In}(p,x)^{110}\mathrm{Sn}$	$^{\rm nat}{\rm Ce}(^3{\rm He,x})^{140}{\rm Nd}$
$^{55}Mn(p,4n)^{52}Fe$	$^{66}Zn(p,n)^{66}Ga$	82 Kr $(p,n)^{82m}$ Rb	$^{108}Cd(\alpha,2n)^{110}Sn$	
50 Cr(α ,2n) 52 Fe	$^{63}\mathrm{Cu}(\alpha,n)^{66}\mathrm{Ga}$	$82 \text{Kr}(d,2n)^{82m} \text{Rb}$	$^{110}{\rm Cd}(p,n)^{110m}{\rm In}$	
52 Cr(p,n) 52m Mn			$^{110}\text{Cd}(d,2n)^{110m}\text{In}$	
52 Cr(d,2n) 52m Mn			$^{107}Ag(\alpha,n)^{110m}In$	
Main	Monitor Reactions 2017	Monitor Reactions 2007	Gamma Emitters	Therapeutic Isotopes

Last edited by: S. Takacs: Aug. 2018.

Medical Isotope Browser

- 60 Years
- Based on TENDL + IAEA medical isotope database
- Release: Oct 2019 at IAEA radiopharmaceutical symposium

Status of INDEN evaluations

On behalf of the INDEN collaboration

MINISTERIO DE ECONOMIA, INDUSTRIA Y COMPETITIVIDAD

東京工業大学 Tokyo Institute of Technology

中国科学院近代物理研究所

Uranium-238 - Status

New information from integral testing since ENDF/B-VIII.0 release & publications

Criticality performance: any new/unexpected findings? No Neutron transmission: any new/unexpected findings? PFNS 5-8 MeV (n,xn) activations: any new/unexpected findings? No

Known deficiencies/gaps:

 Ongoing ChiNu experiments to precisely measure PFNS. The current set of data will be completed within a year or two, and should impact next ENDF

- An updated ²³⁸U resonance analysis (JRC EC Geel)
- (n,n'g) experiment & eval. BNL/LLNL
- FPY, DN, Decay energy, PFGS,

would benefit from various upgrades

An important ENDF/B-VIII.0/CIELO trend in ²³⁸U(n,inl) confirmed by CEA Cadarache adjustment studies (see G. Rimpault present., WONDER 2018)

Agreement in the plateau within quoted 7% uncertainties in ENDF/B-VIII.0 evaluation !!

IAEA Uranium-238 CIELO evaluation - Validation

CIAE benchmarks, slabs, $14MeV n + ^{238}U$

Uranium-235 - Status

New information from integral testing since ENDF/B-VIII.0 release & publications

Criticality performance: any new/unexpected findings? No Neutron transmission: any new/unexpected findings? No (n,xn) activations: any new/unexpected findings? No

 $p_s(E) = p_0 \frac{E}{T_0^2} \exp\left(-\frac{E}{T_0}\right)$

Known deficiencies/gaps:

- Ongoing evaluations of ChiNu experiments to be used (low energy "scission" neutrons ~ .05n/fission ~ 2% to be added as model defect to MN model??)
- New thermal PFNS exp. in agreement with <E>
- Small 1% nubar fluctuations confirmed (Gook et al)
- Measured (n,2n) SACS validated ²³⁵U(n_{th},f) PFNS (>8 MeV)
 (n,2n) on ¹⁶⁹Tm, ⁹⁰Zr, ⁸⁹Y, ¹²⁷I, ²³Na, ¹⁹F, ⁵⁹Co, ⁵⁵Mn, ¹⁹⁷Au
 (Rez ²⁵²Cf(sf)+LR0 reactor, on-going @ ILL reactor Grenoble)

- An updated URR evaluation of fission cross section (no criticality change)

- RPI quasi-int/ exp. to verify fission, elastic/inelastic
- Inelastic and (n,2n) discrepancies with CEA/DAM evaluation being further studied
- FPY, DN, Decay energy, PFGS, would benefit from various upgrades

Other

- Yearly Technical meeting on nuclear data processing, including all ongoing processing code projects in the world
- INDEN on Light elements (in combination with Rmatrix code development) and structural materials.
- FENDL library
- Technical Meeting on Nuclear Data Structure Network (NSDD)
- Technical Meeting on anti-neutrino spectra and their applications
- Technical Meeting on nuclear data for medical applications

Thank you!

