30th Meeting of the NEA Working Party on International Nuclear Data Evaluation Co-operation May 17 – 18, 2018 • Paris, France

Meeting Summary

SG42

Thermal Scattering Kernel $S(\alpha,\beta)$: Measurement, Evaluation and Application

Ayman Hawari, Gilles Noguere

SG42 Final Report

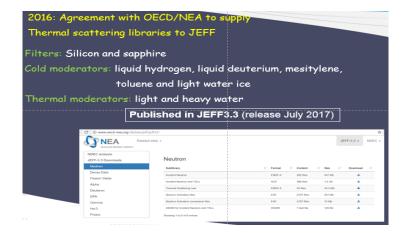
Thermal Scattering Kernel $S(\alpha,\beta)$

Measurement, Evaluation and Application

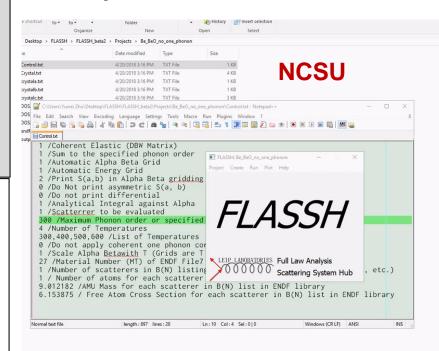
- 1) Context
- 2) Theory: evaluation methods and tools
 - 2.1) Thermal Scattering Law definition
 - 2.2) Main physics approximations used in LEAPR
 - 2.3) Improved TSL libraries using atomistic simulations
 - 2.4) A step forward for future TSL evaluations
- 3) Experimental validation
 - 3.1) Material properties
 - 3.2) Microscopic data
 - 3.3)Semi-integral data
 - 3.4)Integral data
 - 3.5) Facilities for TSL experiments
 - 3.6) Capability gaps
- 4) Evaluation: progress on various materials and recent contributions to databases
 - Reactor applications
 - · Criticality applications
 - Neutron beam applications
 - Cold neutron sources
- 5) Data format issues
 - 5.1) TSL library format
 - 5.2) TSL uncertainties
- 6) Summary and recommendations

Development of evaluation methods and tools

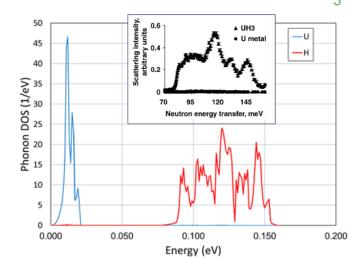
⇒ The major development over the past 20 years is the implementation of atomistic simulation methods to support TSL evaluation

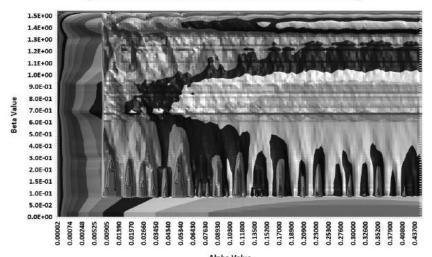

TABLE XLVII: Summary of the origins of and recent changes to the thermal neutron scattering (thermal_scatt) sublibrary. Evaluations modified for ENDF/B-VIII.0 are given in bold. Note all files were modified to correct the MAT numbering of the sublibrary.

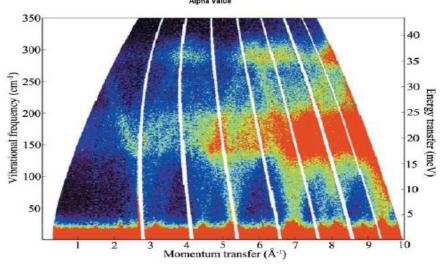
File name	Main source	Last mod.	Lab.		Note
tsl-ortho-D.endf	ENDF/B-VII.0	2016	LANL	1993	
tsl-para-D.endf	ENDF/B-VII.0	2016	LANL	1993	
tsl-ortho-H.endf	ENDF/B-VII.0	2016	LANL	1993	
tsl-para-H.endf	ENDF/B-VII.0	2016	LANL	1993	
tsl-013_Al_027.endf	ENDF/B-VII.0	2016	LANL	2005	
tsl-026_Fe_056.endf	ENDF/B-VII.0	2016	LANL	2005	
tsl-Be-metal.endf	ENDF/B-VIII.0	2016	NCSU	2016	DFT/AILD
tsl-BeinBeO.endf	ENDF/B-VIII.0	2016	NCSU	2016	
tsl-OinBeO.endf	ENDF/B-VIII.0	2016	NCSU	2016	DF I/AILD
tsl-HinH2O.endf	ENDF/B-VIII.0	2016	CAB (Argentina)	2016	MD
tsl-HinIceIh.endf	ENDF/B-VIII.0	2016	BAPL	2016	DFT/AILD
tsl-OinIceIh.endf	ENDF/B-VIII.0	2016	$_{ m BAPL}$	2016	DF1/AILD
tsl-DinD2O.endf	ENDF/B-VIII.0	2016	CAB (Argentina)	2016	MD
tsl-OinD2O.endf	ENDF/B-VIII.0	2016	CAB (Argentina)	2016	
tsl-benzene.endf	ENDF-269	2017	GA	1969	Corrected spelling; No LEAPR
					inputs available
tsl-HinC5O2H8.endf	ENDF/B-VIII.0	2016	NCSU	2015	MD
tsl-HinCH2.endf	ENDF/B-VIII.0	2016	NCSU	2015	MD
tsl-l-CH4.endf	ENDF/B-VII.0	2016	LANL	1993	
tsl-s-CH4.endf	ENDF/B-VII.0	2016	LANL	1993	
tsl-graphite.endf	ENDF/B-VIII.0	2016	NCSU	2016	
tsl-reactor-graphite.endf	ENDF/B-VIII.0	2016	NCSU	2016	DFT/AILD
tsl-CinSiC.endf	ENDF/B-VIII.0	2016	NCSU	2014	DFT/AILD
tsl-SiinSiC.endf	ENDF/B-VIII.0	2016	NCSU	2014	DF T/AILD
tsl-SiO2-alpha.endf	ENDF/B-VIII.0	2016	NCSU	2011	DFT/AILD
tsl-SiO2-beta.endf	ENDF/B-VIII.0	2016	NCSU	2011	DETIMIED


TABLE XLVII: Summary of the origins of and recent changes to the thermal neutron scattering (thermal_scatt) sublibrary. Evaluations modified for ENDF/B-VIII.0 are given in bold. Note all files were modified to correct the MAT numbering of the sublibrary.

File name	Main source	Last mod.	Lab.	Year Note
tsl-HinYH2.endf	ENDF/B-VIII.0	2016	$_{ m BAPL}$	2016 DET/AILD
tsl-YinYH2.endf	ENDF/B-VIII.0	2016	\mathbf{BAPL}	2016
tsl-HinZrH.endf	ENDF/B-VII.0	2016	LANL	1993
tsl-ZrinZrH.endf	ENDF/B-VII.0	2016	LANL	1993
tsl-OinUO2.endf	ENDF/B-VIII.0	2016	NCSU	2016 DFT/AILD
tsl-UinUO2.endf	ENDF/B-VIII.0	2016	NCSU	2016
tsl-NinUN.endf	ENDF/B-VIII.0	2017	NCSU	2017 DET/AILD
tsl-UinUN.endf	ENDF/B-VIII.0	2017	NCSU	2017 DETIVATED

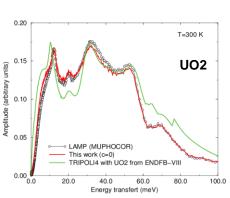


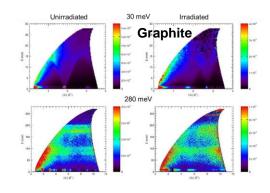

Development of evaluation methods and tools

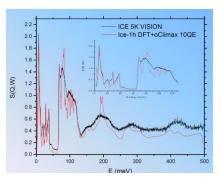


Calculated Phonon DOS for UH₃

One-Phonon $S(\alpha,\beta)$ for Aluminum with Coherent Interference (calculated with MedeA and FLASSH)




Experimental data from: Roach et al., J. Appl. Cryst. (2003)


Theory-Measurements Connections

- ⇒ Experimental validation of the double-differential neutron cross sections using TOF chopper spectrometers (inelastic measurements)
- ⇒ Experimental validation of the neutron total cross section using transmission technique
- ⇒ Experimental validation using pulsed slowing down and die away experiments
- ⇒ Experimental validation using integral benchmarks

Lawrence Livermore National Laboratory (LLNL)
Proof-of-Principle PNDA Experiment

Data covariance information and formats

Agenda

WPEC Subgroup 42

Thermal Scattering Kernel $S(\alpha,\beta)$: Measurement, Evaluation and Application and

WPEC Subgroup 44

Investigation of Covariance Data in General Purpose Nuclear Data Libraries and

WPEC Expert Group GNDS

Expert Group on the Recommended Definition of a General Nuclear Database Structure (GNDS)

> OECD Headquarters Conference Center 2 Rue André Pascal, Paris 75016

Room Chateau E

Starting at 2:00 pm - Ending at 18:00 pm

GNDS-1.9 & future TSL formats

Incoherent approximation of $S(\alpha,\beta)$ supported as in ENDF-6

Proposal: A new subgroup on Advanced Thermal Scattering Law Analysis

- ⇒ Continued growth in the area of thermal neutron scattering data motivates the formation of a new subgroup within the WPEC nuclear data collaboration
 - ⇒ The subgroup would be essential to continue international coordination on advanced TSL methods
 - ⇒ Act as the focal point with other WPEC subgroups (SG44, SG45, GNDS, etc.) in relation to data validation, covariance generation, and data formats, ...