The European Commission's science and knowledge service

32

3

Joint Research Centre

de.

JEFF-3.3

Arjan Plompen

OECD-NEA, 17 May 2018

The JEFF-3.3 release is now official

- Many thanks to all contributors
 - For providing (parts of) the files
 - For fixing files
 - For testing
 - For providing feedback
 - For lively discussions
 - For the support given by NEA

Contents

- JEFF 3.3 <u>http://www.oecd-nea.org/dbdata/jeff/jeff33/</u>
 - Short history
 - Contents
 - Performance
- The future

Information collected from the last two JEFF-CHANDA meetings, November 2017, April 2018. Full presentations are on the JEFF webpage.

Short history

- JEFF 3.2, 5 March 2014.
- JEFF 3.3T0/T1, 19 Feb 2016 (Decision Nov. 2015).
- JEFF 3.3T2, June 2016
- JEFF 3.3T3, March 2017
- JEFF 3.3T4, June 2017
- JEFF 3.3, 20 November 2017

Short history

- New major actinides (Morillon, Romain, De Saint Jean, Leal)
- New thermal scattering data (April 2017, Cantargi, Granada, Marquez Damian, Noguere)
- Radioactive Decay Data File (Oct. 2016, M. Kellett & O. Bersillon, JEF/DOC-1792)
- FY beta file UKFY3.7, adjustment to new RDD pending (Wednesday)
- New covariances, larger subset of MTs, some proposals still not ENDF format
- Removal of legacy files, update of adopted files to latest release.
- Increased reliance on TENDL for completeness and decay heat (D. Rochman, M. Flemming)
- Improved gamma-data and energy balance for emission (C. Jouanne, R. Perry, G. Noguere, O. Serot, ...)
- Restoration of 8 group structure for delayed neutrons (P. Leconte)
- New Cu files (Pereslavtsev, Leal)
- Many issues resolved (many contributors)

Evaluated ²³⁸U(n,f) & standard cross section

R. Capote

JEFF 3.3 T1

- March 2016, 559 materials
 - Impose the fission standards: new CEA-IRSN actinide files
 - Covariances for all important nuclides.
 - Many specific issues with nuclides Cr, Cu, Cd, Ta, W, Hf, Au, Pb, Bi, ...
 - Replacement of legacy files
 - New TENDL files; includes replacing earlier TENDL.
 - Activation library performance upgrade (Sublet)
 - Many bug-fixes (Jouanne, Haeck, Rochman, a.o.)

Fission standards

Adopted for U-235 & U-238

JEFF 3.3 T2

- □ T2 June 2016, 559 materials
 - □ 44 changes from T1
 - 40 photoproduction from TENDL: Y89, Zr93, Nb95, Mo, Ru, Pd, In, I, Xe, Cs, Ba134, La139, Ce, Pr, Nd, Pm, Sm, Eu, Gd157, Dy, Hf (Perry)
 - 304 changes to covariances from TENDL
 - Restore 2H, 0C, Cd, W, Au
 - Restore and mod INL of Cr Pb-206,206,208, Bi-209
 - Cu-63,65: KIT+3.2-RR
 - Add 81Br, remove 80Br
 - Recoil data Sauvan 54,56,57,58Fe
 - Ni-59 Helgesson
 - □ MF1 updates Noguere, Plompen, ...
 - □ Many bugfixes discovered in processing Jouanne, Haeck, NDEC/Diez, ...

JEFF 3.3 T3

- New Radioactive Decay Data file (Kellett)
- Adjustment of the new Fission Yields file to new RDD UKFY3.7 (Mills)
 - So far the old RDD
 - □ Still needs covariances (several options)
- Covariances U-235
- Updates to gamma-emission: capture, inelastic, pfgs
- Restoration of 8 group structure delayed neutron data
- New cases (Rochman, Fleming, decay heat)
- **O-16**
- I TSL H, D, O
- 54,56,57,58 Fe CIELO/ENDF/B-VIII.0beta
- 63,65Cu KIT + ORNL/IRSN resonance parameters
- □ Zr chain, fusion (KIT and partners)
- Corrections Jouanne, Rochman

JEFF 3.3

(former JEFF-3.3T4)

Turn back Fe

- □ Improve Cu files (merge resonance file with KIT fast range)
- □ Improve covariances nu-bar for Pu-239
- UK FY3.7 adopted after verification against new RDD file; still working on covariances.
- DPA files adopted

New Radioactive Decay Data

- Oct. 2016, M. Kellett & O. Bersillon
- This week: JEF/DOC-1792, M. Kellett

FROM JEFF-3.1.1 TO JEFF-3.3

JEFF-3.3 (released October 2016):

Complete re-assessment and update to all 900 evaluations coming from ENSDF Assessment of IAEA actinide decay data (85 nuclei) Assessment of IRDFF decay data library (~80 nuclei) Inclusion of updated UKPADD-6.12 library (~50 additional nuclei) Assessment of new DDEP evaluations (~30 additional nuclei) Inclusion of initial TAGS results from University of Valencia (2010) Inclusion of first TAGS results from University of Nantes (2015) Inclusion of further TAGS results from University of Valencia (2016) Corrections based on limited feedback to JEFF-3.1.1

JEFF-3.3: Source libraries

Contents of JEFF-3.2 (March 2015) and JEFF-3.3 (October 2016)

Library	JEFF-3.2	JEFF-3.3
NUBASE	2 297	2 295
ENSDF	861	849
UKPADD-6.x	441	441
UKHEDD-2.x	46	59
DDEP	128	140
IAEA	79	66
IRDFF	-	2
Total	3 852	3 852

JEFF Meeting, 30 November 2016 | Mark A. Kellett & Olivier Bersillon

It was found that ~100 or so evaluations, from the 900 evaluations coming from ENSDF, were less consistent than before, i.e. energy balance is now worse than 2%. Original files from JEFF-3.1.1 have been kept for JEFF-3.3.

Many issues were identified with the ENSDF formatted files coming from DDEP and IAEA – these were all recreated and tested, before conversion to the ENDF format.

Very limited manpower available for producing new evaluations. However, I have managed to recruit three new part-time DDEP evaluators from the metrology community: NIST (USA), NIM (China) and PTB (Germany) and CTBTO are currently funding a fourth person to produce new/updated evaluations for Xe-133, Xe-133m, Xe-135 and Xe-135m.

A new UK fission yield evaluation – UKFY3.7

Dr Robert W Mills, NNL

(From his contribution to ND2016)

Important fissioning systems

Max. Fr							
>10%	1-10%	0.1%-1%	Spont. fission				
nuclides: 5	2	12	3				
* ²³³ U TFH * ²³⁵ U TFH * ²³⁸ U FH * ²³⁹ Pu TF * ²⁴¹ Pu TF	* ²⁴⁰ Pu F ²⁴⁵ Cm TF	* ²³² Th FH ²³⁴ U F ²³⁶ U F ²³⁷ Np TF ²³⁸ Np TF ²³⁸ Pu TF ²⁴² Pu F ²⁴² Pu F ²⁴¹ Am TF ²⁴² Am TF ²⁴³ Am TF ²⁴³ Cm TF ²⁴⁴ Cm TF	²⁵² Cf Sp ²⁴² Cm Sp ²⁴⁴ Cm Sp				

* Nuclides in UKFY1 and previous UK libraries.

- T Thermal fission.
- F Fast fission.
- H 14Mev Fission.
- Sp Spontaneous fission.

New data

• New data split into systems:

Neutron spectra	Fissioning nuclide	UKFY3.6	New data	UKFY3.7		
Thermal	Th229	337	72	409		
Thermal	U233	757	188	945		
Thermal	U235	2390	151	2541		
Thermal	Np238	115	63	178		
Thermal	Pu239	861	225	1086		
Thermal	Pu241	334	63	397		
Thermal	Cm245	161	219	380		
Thermal	Cf249	305	239	544		
Fast	U235	724	5	729		
Fast	Pu239	390	5	395		
Fast	Pu241	111	5	116		

• Fast yields refer to Neodymium cumulative yields.

Covariances

- Overview: O. Cabellos, CW2017, Aix-en-Provence
- Major nuclides: U-235, U-238, Pu-239 (CEA)
- TENDL-2015 + updates (D. Rochman)
- TSL: H in H₂O (G. Noguere)
- Processing w. NJOY2012.99 (O. Cabellos, J. Dyrda)
- Accessible through JANIS
- Verified through NDaST (chi, nubar, ...)

I. JEFF-3.3T4 (562 files)

Table 1: List of isotopes with covariances in JEFF-3.3T4

MFs	Isotopes	#ENDF Files	#Processed Files
MF31	89-Ac-225 89-Ac-226 89-Ac-227	50	50
MF32	6-C-13 8-O-17 8-O-18	352	
MF33	1-H-1 1-H-2 3-Li-6 3-Li-7	442	
MF32/MF33			446
MF34	6-C-13 8-O-17 8-O-18	359	346
MF35	89-Ac-225 89-Ac-226 89-Ac-227	35	35
MF40	13-Al-26 15-P-31 17-Cl-36	286	0
MF31MF40		447	
No Covariance	1-н-3 2-не-3 2-не-4 6-С-0	115	

• MF31: U235, U238, Pu239, ...

• MF35 - Chi(E) : U235, U238, Pu239, ...

U233 MF31-only delayed and prompt U233: No MF35

De Saint Jean, JEFF April 2016

Further covariances for Hf

Many from TENDL (D. Rochman)

U-235, MT18

U-235, MT452

U-235, MT1018

□ U-235, MT102

Incident neutron data / / / MT=102 : (z, y) /

^{© 2016} Organisation for Economic Co-operation and Development

V.1 Verifying Covariance Data: Pu cases (21 Benchmarks) NDaST (Nuclear Data Sensitivity Tool) tool

Figure. PU's Mosteller Benchmark Suite (21 Benchmarks): only Pu239/JEFF-3.3-T4 1.0200 1.0175 1.0150 In "green" nuclear data uncertainty 1.0125 1.0100 1.0075 In "BLEU" U U U U U U U 1.0025 ↓ 0000 exp. uncertainty 1.0000 In red. 0.9975 Keff C/E JEFF-3.3T4 0.9950 0.9925 0.9900 0.9875 0.9850 PMP026001 (Dealed Model) Pull Ch CO Leaded Hodel www.003001 tiffed Modell onf020.001 ph/021.001 Putro5-01 Dealed hode) NMF001001 NF002.001 2NF003-003 NF005-001 NF06-01 JH009-001 NF010-001 NF011.001 MF018-001 WF019-001 PMF021.002 MF008-001 PMF051001 Ginph -WF022001 Deta on#023001 Det

Perturbed C/E = C/E uncertainty = Data uncertainty - C/E

© 2016 Organisation for Economic Co-operation and Development

V.2 Verifying Covariance Data: Pu cases (21 Benchmarks)

□ The impact of evaluations: JENDL-4.0u, ENDF/B-VII.1 and JEFF-3.3T4

rig. r d o mootener Benerinark eake (21 Benerinarko)emy <u>r d200 61000 Sectione oovaria</u>															
	ENDF/B-VII.1						JENDL4				JEFF-3.3T4				
	All	Elastic	Inel.	Fission	Gamma	All	Elastic	Inel.	Fission	Gamma	All	Elasti	c Inel.	Fission	Gamma
PMF001-001	780	439	797	331	74	542	197	250	434	60	294	90	150	305	30
PMF002-001	628	382	629	281	62	453	171	194	369	50	250	78	118	262	25
PMF003-003	457	272	346	317	77	447	119	93	416	61	277	55	62	293	31
PMF005-001	579	257	539	315	111	471	107	181	411	92	286	51	103	301	45
PMF006-001	401	175	292	286	113	396	68	74	371	95	275	32	52	280	46
PMF008-001	588	276	553	316	105	470	115	176	412	87	286	54	105	302	42
PMF009-001	664	326	652	321	91	498	141	215	420	73	284	65	124	300	36
PMF010-001	514	252	460	304	97	439	107	132	397	80	275	50	85	291	39
PMF022-001	852	467	884	339	76	571	210	284	445	61	306	95	168	312	31
PMF023-001	683	340	673	329	91	510	149	215	432	75	290	68	128	305	37
PMF024-001	777	379	799	319	97	527	163	263	419	81	291	75	153	297	56
PMF025-001	678	381	663	334	81	515	169	203	438	66	292	77	124	309	33
PMF026-001	584	279	541	325	100	481	122	170	425	82	287	56	102	304	41
MMF001-001	449	221	407	262	72	382	97	122	344	59	230	45	75	244	29
MMF003-001	408	195	363	245	70	350	86	94	321	58	216	39	64	228	28

Fig. Pu's Mosteller Benchmark Suite (21 Benchmarks) ...only Pu239 cross-sections covariance

 $\ensuremath{\mathbb{C}}$ 2016 Organisation for Economic Co-operation and Development

V.3 Verifying Covariance Data

H in H2O covariances

- H in H2O covariances
- CONRAD calculations, by G. Noguere

Figure. H in H2O correlation matrix

Figure. H (JEFF-3.3T4) correlation matrix

Thermal scattering

- 20 files, 14 new, first covariances for H in H_2O .
- Cantargi, Granada, Marquez Damian
 - D in D₂O, Ortho D₂, Para D₂
 - H in ice, mesitylene, Ortho H₂, Para H₂, toluene
 - 0-16 in D₂O, Al₂O₃
 - Al in Al2O₃
 - Si in Si
- Mg in Mg (Mounier)
- H in CaH₂, Ca in CaH₂ (Serot)
- Keinert, Mattes
 - H in H₂O, CH₂, ZrH (Keinert, Mattes)
 - Be in Be (Keinert, Mattes)
 - C in graphite (Keinert, Mattes)

Benchmarking

- Mosteller suite
- ICSBEP
- Institute dependent subsets of ICSBEP
- Institute dependent proprietary benchmarks
- Criticality
- Some decay heat

An example of a critical assembly

- JEZEBEL criticality benchmark, modeled as a Pu sphere
 - k=1
 - 1 nuclide: ²³⁹Pu
- One of the Mosteller suite of 123 cases used for nuclear data library development.
- Much wider suite: ICSBEP

www.oecd-nea.org/science/wpncs/icsbep/

K-eff is a balance

JEZEBEL $k_{eff}(BRC) = 1.00082(11) k_{eff}(B-VII) = 1.00060(12)$

B. Morillon, P. Romain (CEA) INDC(NDS)-0597

K-eff is a balance, a ratio of two integrals

- Partial cross section differences between evaluations have k-eff impacts well beyond the desired uncertainty.
- Fortuitous cancellations must be expected!
- How cancellations affect predictability out of the benchmarking domain is even less clear than within.
- There is no substitute for understanding.
- We must continue to improve our understanding despite the ability for & with the aid of massive computation and comparison.

Mosteller suite testing of JEFF-3.3Tn

F. Michel Sendis (NEA)

Benchmark Cases (arbitrary progression)

JEFF-3.3Tn testing against ICSBEP

S. van der Marck (NRG)

Benchmarking & Validation Activities

Reference Paper in ND2016. Published: EPJ Web of Conferences 146, 06004 (2017)

Benchmarking and Validation Activities within JEFF Project

O. Cabellos^{1,*}, F. Alvarez-Velarde², M. Angelone³, C.J. Diez¹, J. Dyrda¹, L. Fiorito⁴, U. Fischer⁵, M. Fleming⁶, W. Haeck⁷, I. Hill¹, R. Ichou⁷, D. H. Kim⁸, A. Klix⁵, I. Kodeli⁹, P. Leconte¹⁰, F. Michel-Sendis¹, E. Nunnenmann⁵, M. Pecchia¹¹, Y. Peneliau¹⁰, A. Plompen¹², D. Rochman¹¹, P. Romojaro¹³, A. Stankovskiy⁴, J.Ch Sublet⁶, P. Tamagno¹⁰, S. van der Marck¹⁴

¹ NEA, OECD, Paris, France
 ² CIEMAT, Madrid, Spain
 ³ ENEA, Frascati, Italy
 ⁴ SCK-CEN, Mol, Belgium
 ⁵ KIT, Eggenstein-Leopoldshafen, Germany
 ⁶ UKAEA, Abingdon, Oxfordshire, United Kingdom
 ⁷ IRSN, Paris, France
 ⁸ KAERI, Daejeon, South Korea
 ⁹ JSI, Ljubljana, Slovenia
 ¹⁰ CEA, DEN, DER, SPRC, Cadarache, France
 ¹¹ PSI, Villigen, Switzerland
 ¹² JRC, Geel, Belgium
 ¹³ UPM, Madrid, Spain
 ¹⁴ NRG, Petten, The Netherlands

14 Institutions !!!

Abstract. The challenge for any nuclear data evaluation project is to periodically release a revised, fully consistent and complete library, with all needed data and covariances, and ensure that it is robust and reliable for a variety of applications. Within an evaluation effort, benchmarking activities play an important role in validating proposed libraries. The Joint Evaluated Fission and Fusion (JEFF) Project aims to provide such a nuclear data library, and thus, requires a coherent and efficient benchmarking process. The aim of this paper is to present the activities carried out by the new JEFF Benchmarking and Validation Working Group, and to describe the role of the NEA Data Bank in this context. The paper will also review the status of preliminary benchmarking for the next JEFF-3.3 candidate cross-section files.

European Commission

I. Main changes in JEFF-3.3T4

Table: Main changes in JEFF3.3T4 beta files for criticality + uncertainty assessment

	JEFF-3.3T2	JEFF-3.3T2+	JEFF-3.3T3	JEFF-3.3T4
Pu239	JEFF-3.3T2	JEFF-3.3T2	JEFF-3.3T2	nubar uncertainties
U235	JEFF-3.3T2	JEFF-3.3T2	JEFF-3.3T2	fission and nubar uncertainties
U238	JEFF-3.3T2	JEFF-3.3T2+RR/JRC	JEFF-3.3T2+RR-JRC	JEFF-3.3T2+RR-JRC
016	ENDF/B-VII.1	O16-Luiz	O16-Luiz	ENDF/B-VII.1
TSLs	JEFF-3.1.1	H2O Bariloche D2OBariloche	H2O Bariloche D2OBariloche	H2O – JEFF-3.1.1 D2O – ENDF/B-VIIIb4
Cu	KIT1+Sobes/Luiz	ENDF/B-VII.1+RR/JRC	KIT1-rev+Sobes/Luiz	KIT2-rev+Sobes+RR/JRC
Fe54/56	JEFF-3.2	JEFF-3.2	ENDF/B-VIIIb4	JEFF-3.2
Al27	JEFF-3.2	JEFF-3.2	JEFF-3.2	Generate and add covariances using TENDL approach

Commission

II. XSs, PFNS and nubar Uncertainties

Table: Jezebel (PMF1) and Godiva (HMF1) criticality k-eff uncertainty (in pcm), based on NDaST and MCNP simulations

Jezebel	CIELO-1	B-VII.1	JEFF-3.3	JENDL- 4.0u1
fission	903	331	305	434
nubar	241	81	413	209
PFNS E _{av}	185	186	443	286
elastic	463	438	90	198
inelastic	797	797	150	250
capture	67	74	30	59
Summed	1025	562	645	648
Exp. unc.	110	110	110	110
C-E	15	12	68	185

Godiva	CIELO-1	B-VII.1	JEFF-3.3	JENDL- 4.0u1
fission	788	269	648	320
nubar	540	545	510	274
PFNS E _{av}	132	276	364	176
elastic	276	294	109	426
inelastic	698 (est.)	616	698	681
capture	281	873	375	269
Summed	1039 (est.)	1220	1342	962
Exp. unc.	100	100	100	100
C-E	6	8	16	167

European Commission

III. Results of criticality benchmarking

Figure: Cumulative Chi-2 build-up (SENDIS output)

ean 1ission

Results of criticality benchmarking using ICSBEP

 Table: Evaluation of general performance for extended validation suites.

 Values are "reduced" Chi-squared, number of cases in brackets

	NE	A (based on	Mostelle	r´s suite	"Expert	Judgement	t")	
	ENDF/B-VII.1	ENDF/B-VIIIb4	JEFF-3.1.1	JEFF-3.2	JEFF-3.3.T2	JEFF-3.3T2+	JEFF-3.3T3	JEFF-3.3T4
DU	4.2	2.2	2.9	3.6	2.8	2.4	2.4	2.7
PU	(29)	(29)	(29)	(29)	(29)	(29)	(29)	(29)
HEU	6.1	3.4	5.3	11.8	2.2	3.5	3.9	2.8
HEU	(42)	(42)	(42)	(42)	(42)	(42)	(42)	(42)
IEU	5.0	1.9	11.3	4.9	2.7	2.1	2.2	2.4
IEO	(12)	(12)	(12)	(12)	(12)	(12)	(12)	(12)
LEU	0.9	1.4	1.4	0.9	1.8	3.7	4.0	2.3
LEO	(13)	(13)	(13)	(13)	(13)	(13)	(13)	(13)
11222	1.7	2.1	9.5	1.2	1.7	1.9	1.7	1.6
U233	(18)	(18)	(18)	(18)	(18)	(18)	(18)	(18)
NAIV	0.7	1.0	1.2	0.9	0.9	1.0	0.8	1.0
MIX	(8)	(8)	(8)	(8)	(8)	(8)	(8)	(8)
SPEC	0.99249	0.99338	0.98719	0.98847	0.99142	0.99145	0.99118	0.99107
(C/E)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)
Tatal	3.7	2.0	6.5	5.6	2.0	2.9	3.1	2.2
Total	(123)	(123)	(123)	(123)	(123)	(123)	(123)	(123)

Results of criticality benchmarking using ICSBEP

Table: Evaluation of general performance for extended validation suites.**Values are** "*reduced*" Chi-squared, number of cases in brackets

	(based on I	NRG – Steven van der Mark (based on ICSBEP "brute force" we rely on statistical analysis)									
	JENDL-4.0	ENDF/B-VII.1	ENDF/B-VIIIb4		JEFF-3.1.1		JEFF-3.3T4				
PU	6.4 (479)	6.0 (479)	5.2 (479)		5.6 (479)		6.3 (479)				
HEU	9.0 (653)	6.0 (653)	5.9 (653)		6.3 (653)		6.2 (653)				
IEU	8.7 (43)	1.8 (43)	1.2 (43)		5.2 (43)		2.0 (43)				
LEU	3.4 (415)	3.3 (415)	3.7 (415)		4.0 (415)		3.9 (415)				
U233	2.2 (66)	6.5 (66)	2.6 (66)		2.0 (66)		4.4 (66)				
МІХ	7.9 (168)	6.5 (168)	7.0 (168)		5.5 (168)		7.0 (168)				
Total	7.4 (1824)	5.1 (1824)	4.8 (1824)		5.2 (1824)		5.3 (1824)				

)ean nission

III. NRG-results: ENDF/B-VIII.0b4 versus JEFF-3.3T4

Results of criticality benchmarking using ICSBEP

 Table: Evaluation of general performance for extended validation suites.

 Values are "reduced" Chi-squared, number of cases in brackets

		NRG – Ste	Ve	en van der Mar	k						
	(based on IC	based on ICSBEP "excluding benchmarks with large bias")									
	JENDL-4.0	ENDF/B-VII.1		ENDF/B-VIIIb4		JEFF-3.1.1		JEFF-3.3T4			
	1.0	2.0		2.1		2.4		2.6			
PU	4.6 (444)	3.8 (444)		3.1 (444)		3.1 (444)		3.6 (444)			
HEU	6.7 (595)	3.7 (595)		3.5 (595)		4.0 (595)		3.6 (595)			
IEU	8.4 (37)	1.8 (37)		1.2 (37)		4.6 (37)		1.4 (37)			
LEU	3.1 (407)	3.1 (407)		3.5 (407)		3.8 (407)		3.6 (407)			
U233	2.2 (66)	6.5 (66)		2.6 (66)		2.0 (66)		4.4 (66)			
міх	7.0 (165)	5.7 (165)		6.2 (165)		4.7 (165)		6.1 (165)			
Total	6.1 (1714)	3.8 (1714)		3.3 (1714)		3.8 (1714)		3.6 (1714)			

Only common cases, except for cases with $(k_c-k_E) > 5^* \Delta k_{exp}$

ropean mmission

Results of criticality benchmarking using ICSBEP

Table: Evaluation of general performance for extended validation suites.Values are "reduced" Chi-squared, number of cases in brackets

	(based on IG	NRG – Steven van der Mark (based on ICSBEP "excluding benchmarks with large bias"							
	JENDL-4.0	ENDF/B-VII.1		ENDF/B-VIIIb4		JEFF-3.1.1		JEFF-3.3T4	
FAST	4.3 (256)	3.0 (255)		2.8 (255)		5.0 (255)		2.8 (255)	
INTER	7.3 (26)	9.6 (21)		4.7 (21)		11.2 (21)		6.8 (21)	
THERM	5.6 (1399)	3.7 (1367)		3.4 (1367)		3.3 (1367)		3.6 (1367)	
MIXED	3.6 (33)	4.3 (33)		5.5 (33)		4.7 (33)		5.4 (33)	
Total	6.1 (1714)	3.8 (1714)		3.3 (1714)		3.8 (1714)		3.6 (1714)	

Only common cases, except for cases with $(k_c - k_E) > 5^* \Delta k_{exp}$

JEFF-3.3 is available for GEANT4, courtesy CIEMAT, Emilio Mendoza Cembranos, Daniel Cano Ott

Summary and conclusions

JEFF-3.3, together with other nuclear data libraries, will be soon available for download from the IAEA nuclear data service: <u>https://www-nds.iaea.org/geant4/</u>

A comparison between Geant4 and MCNP6 when using JEFF-3.3 has been performed concerning the neutron transport. Some of the differences have been quantified. According to our comparison, JEFF-3.3 is the library that yields more similar results between both codes.

A large set of plots containing energy distributions from Geant4 and MCNP6 simulations of the secondary neutrons, γ -rays, p, d, t, ³He and α will be available from the IAEA nuclear data service together with the libraries.

Future work ("CHANDA2" EOI):

- Systematic comparison between Geant4 and MCNP6 concerning the charged particle production.

- Convert to the G4NDL format the TENDL-2017 library (JEFF-3.3) for incident charged particles.

Emilio Mendoza Cembranos – Daniel Cano Ott JEFF meeting, CIEMAT, April 2018

Lead Slowing Down Spectrometers

β_{eff} results (Big Ten)

Big Ten ${oldsymbol{eta}}_{\scriptscriptstyle eff}$			MCNP6	MCNP6	C/E	C/E	C/E	
[pcm]	Benchmark	SUSD3D	p. k-ratio	(KOPTS)	p. k-ratio	KOPTS	k _{eff}	rate
Experiment	720 ± 7							Canture
ENDF/B-VII.0		720	723 ± 4	725 ± 5	1.00	1.01	0.99969	ع ا
ENDF/B-VII.1			719 ± 4	732 ± 5	1.00	1.02	0.99948	
JEFF-3.2			752 ± 4	743 ± 5	1.04	1.03	0.99954	
JEFF-3.3T2			752 ± 4	743 ± 5	1.04	1.03	1.00013	
JEFF-3.3T4			728 ± 4	727 ± 5	1.01	1.01	0.99991	
CIELO			720 ± 4	719 ± 5	1.00	1.00	1.00066	

Prompt k-ratio -> prompt / (prompt + delayed) KOPTS method -> based on iterated fission probability interpretation of adjoint flux

Meeting – Paris, 20-21 5/19 November 2017

I. Oxygen: Neutron Leakage from JAERI cylinder with D-T source

<u>Findings</u>: - JENDL-3.3T4 = ENDF/B-VII.1 and ENDF/B-VIII.0 are practically indistinguished - however among them, the ENDF/B-VIII.0 is slightly better

4

II a. Results for IPPE Fe sphere (Wall=29 cm) with ²⁵²Cf(s.f.):

Neutron Leakage

Before MCNP modelling we:

- replaced ²⁵²Cf(s.f.) neutron spectrum given in the ICSBEP MCNP input (as Watt with Froehner parameters) by PFNS Standard (Mannhart evaluation), vp = 3.7590
- added delayed neutrons (vd = 0.0086) with DFNS spectrum from ENDF/B-VII.1

Observations from C/E comparison: JEFF-3.3T4 looks even more preferable than others

<u>Observations</u>: - ENDF/B-VIII.0 & JEFF-3.3T4 equally and nearly reasonable reproduce LLL spheres - essential progress is observed when comparing with previous versions (ENDF/B-VI)

III. Ta: Results - Neutron leakage from Lewis Sphere with Am-Be source

Observations:

- JEFF-3.3T4 reasonably agrees with this benchmark
- ENDF/B-VII.1 = ENDF/B-VIII.0 (both based on TALYS) seem behave a bit worse than JEFF-3.3T4

DPA, Konobeev

1. JEFF-3.3 extension using TENDL-2017

Conclusion

Atomic displacement cross-sections were obtained for materials from Be to Bi using arc-dpa and NRT model

Main improvements compared to DXS-2017:

- JEFF-3.3 + TENDL-2017
- calculations applying CEM03 and ECIS at energies above 50 MeV
- arc-dpa model with BCA corrections for AI, Fe, Cu, and W

Analysis of the JEFF-3.3 library for the UQ of Gen-IV reactor concepts

P. Romojaro, F. Álvarez-Velarde pablo.romojaro@ciemat.es, francisco.alvarez@ciemat.es

CIEMAT – Nuclear Innovation Unit

JEFF Meeting – CIEMAT (Madrid), April 18th – 20th, 2018

• Significant gaps between current uncertainties and target accuracies have been shown in the past

Target accuracy for fast reactors k_{eff} = 300 pcm^{*}

- Objective: benchmarking and UQ analysis with state-of-the-art ND for Gen-IV reactor concepts
 - MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications)
 - ALFRED (Advanced Lead Fast Reactor European Demonstrator)
 - ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration)

		MYRRHA			ALFRED			ASTRID	
	JEFF-3.2	JEFF-3.3	Difference	JEFF-3.2	JEFF-3.3	Difference	JEFF-3.2	JEFF-3.3	Difference
k _{eff}	1.00475	1.00722	+247 pcm	0.99220	0.99937	+717 pcm	0.99838	1.00252	+414 cpm
ν	2.930	2.908	-0.8 %	2.937	2.914	-0.8 %	2.932	2.913	-0.7 %
Total fission probability	0.343	0.346	+1.0 %	0.338	0.343	+1.5 %	0.340	0.344	+1.1 %
Total capture probability	0.664	0.660	-0.5 %	0.635	0.632	- 0.4 %	0.657	0.654	-0.6 %

MYRRHA – ISC (%/%)									
Quar	ntity	JEFF-3.2	JEFF-3.3						
²³⁹ Pu	ν	0.694	0.696	•					
²³⁹ Pu	(n,f)	0.484	0.482						
²³⁸ U	(n,γ)	-0.114	-0.112						
²⁴⁰ Pu	ν	0.081	0.081	-					
²³⁹ Pu	(n,γ)	-0.057	-0.053	-					

• Reactivity increase in MYRRHA, ALFRED and ASTRID with JEFF-3.3

• JEFF-3.2 and JEFF-3.3 yield similar ISC and sensitivity profiles

Good agreement between JEFF-3.3 and ENDF/B-VIII.0 for total k_{eff} uncertainty in reactor concepts

• Very different magnitude and contributors to the total uncertainty

• k_{eff} target accuracy is exceeded at least by a factor of two for all considered reactors

IRSN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

Calculation of Integral experiments with the MORET 5 code in support to the validation of JEFF-3.3 nuclear data

Selection of 238 cases covering:

- FAST energy range,
- INTERMEDIATE energy range,
- THERMAL energy range,
- SPECIAL isotopes (²³³U, ²³⁷Np,...)

LECLAIRE Nicolas © IRSN

April, 19th 2018

Conclusions (comparison 3.3t3/3.3)

Thermal energy spectrum

- No deterioration or improvement of results for Pu, LEU and MOX in lattices
- Slight improvement of results for LEU, HEU solutions in water due to 0₁₆, except for lead as reflector
- Improvement of results for solutions in heavy water: TSL of H₂-D₂O and O₁₆-D₂O
- Improvement of results for uranium when compared with JEFF-3.2

Intermediate energy spectrum

- Slight improvement of results with Cu JEFF-3.3 in ZEUS experiments
- Deterioration of results with ⁵⁶Fe JEFF-3.3 in the fissile

Fast energy spectrum

- Pu without reflector: no improvement of results
- HEU without reflector: good agreement and improvement when compared with JEFF-3.2

Conclusions (continued)

Fast energy spectrum

- Deterioration of k_{eff} results for systems with Fe (JEFF-3.3/JEFF-3.3t3)
- Still bad results for systems with CH₂ reflectors : evaluation?, processing?
 - Better results with JEFF-3.2

Analysis based on a restricted number of experiments

- Focus on few isotopes
 - Main tendencies highlighted
- Need to go more deeply to explain all the results (compensation between various isotopes)

To be done:

Use of sensitivity coefficients to better understand trends

JEFF 3.3 processing

Processed with NJOY 2016.03

NOT every nuclide "passes":

- Am243: small error in first lines of ENDF: "9549" instead of "9543", corrected.
- BE-METAL: error of space in temperatures in ENDF, corrected
- Zr92, Zr94, Sn116, Sn117: make NJOY crash
- Be9, Ar39, Cs135 (run but no covariance produced)
- D-D2O and O-D2O: Problem of numbering of lines (absent), but OK for NJOY
 - Raphaëlle ICHOU

IRSN

DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

- The case of probability table with negative val Clément JEANNESSON
 - Ag109
 - Hf174
 - Np238
 - Cf252

Feedback on JEFF 3.3 processing with GAIA 1.1

Raphaëlle ICHOU

Clément JEANNESSON

The case of non-positive elastic cross sections - RECONR:

---message from emerge---nonpositive elastic cross sections found.

- JEF 2.2: 61Ni, 128Te, 152Eu, 154Eu, 157Gd, 176Lu, 185Re, 240Pu, 241Am, 244Cm
- JEFF 3.1: 40Ar, 61Ni, 111Cd, 113Cd, 128Te, 157Gd, 182W, 244Cm
- JEFF 3.2: 32Si, 36S, 40Ar, 61Ni, 128Te, 152Gd, 157Gd, 240U
- JEFF 3.3: 40Ar, 61Ni, 152Gd, 157Gd, 240U

Validation of JEFF-3.3 and ENDF/B-VIII.0 on SCK•CEN projects

Alexey Stankovskiy

SCK•CEN, Belgium astankov@sckcen.be VENUS-F fast spectrum zero power facility

Decay heat benchmark

Contributions: A. Krása, D. Gérard (SCK•CEN) K.-H. Schmidt

ND validation at VENUS-F

- JEFF-3.3 compared to JEFF-3.2
 - large change for ²³⁵U (-890 pcm) and ²³⁸U (+370 pcm), ²⁰⁸Pb (+485 pcm)
 - intermediate change for ²⁰⁶Pb (+100 pcm), ²⁰⁷Pb (-80 pcm),
 ²⁰⁹Bi (-70 pcm)
 - small change (-70 pcm) when altering all isotopes
- ENDF/B-VIII.0 compared to ENDF/B-VII.1
 - change only for ²³⁵U (-100 pcm) and ⁵⁶Fe (-90 pcm)
 - -150 pcm when altering all isotopes

Decay heat of PWR assemblies

European Commission

Decay heat of BWR assemblies

NDF/B-VIII.0 vs ENDF/B-VII.1: consistent decrease \rightarrow globally worsening FF-3.3 vs JEFF-3.1.2: consistent increase \rightarrow globally improvement

European Commission

PWR and BWR

PWR assemblies

BWR assemblies

	C/E-1, %	χ²			C/E-1, %	χ²
ENDF/B-VII.1	0.27	2.61	1	ENDF/B-VII.1	1.43	1.93
ENDF/B-VIII.0	-1.18	4.57		ENDF/B-VIII.0	-0.03	2.09
ENDF/B-VIII.0+GEFY	-1.70	6.79		ENDF/B-VIII.0+GEFY	-0.76	2.14
JEFF-3.1.2	-1.85	7.97		JEFF-3.1.2	-0.77	2.50
JEFF-3.2	-1.75	7.72		JEFF-3.2	-0.61	2.40
JEFF-3.3	-0.61	3.64		JEFF-3.3	0.40	1.78

ENDF/B-VII.1 wins

- BWR results better than PWR for all libs
- > JEFF-3.3 better than JEFF-3.1.2 and JEFF-3.2

²³⁵U FPDH

²³⁸U FPDH

²³⁹Pu FPDH

Summation calculations and validation with integral experiments

A. Sánchez, D. Cano-Ott, E. Mendoza, P. Romojaro

CIEMAT– Unidad de Innovación Nuclear Type 1: Natural U reflector Neme Deletine contribution to $\hat{\sigma}_{-}$ (%) Description

Name	Relative contribution to $eta_{ ext{eff}}$ (%)	Description	
POPSY	52.5% ²³⁹ Pu, 40.9% ²³⁸ U	Pu core	_
TOPSY	72.7% ²³⁵ U, 25.4% ²³⁸ U	HEU core	
JEZEBEL	90.9 ²³⁹ Pu, 7.1% ²⁴⁰ Pu	Bare Pu sphere	_
SKIDOO	97.2% ²³³ U, 1.3% ²³⁸ U	Bare ²³³ U sphere	Ma
FLAT-TOP 23	65.7% ²³³ U, 30.3% ²³⁸ U	²³³ U core	IVI

Standard evaluated libraries JEFF-3.3 and ENDF/B-VIII.0

In addition, 4 modified libraries are used (for each standard library):

V01: ν_d (and total) replaced with new values from summation calculations of the main fissioning systems using fission yields and decay data from standard library.

V02: ν_d (and total) replaced with new values from summation calculations of the main fissioning systems using fission yields and decay data from standard library complemented with new evaluated IAEA CRP P_n values (Oct. 2017).

V03: ν_d (and total) replaced with new values from summation calculations of the main fissioning systems using FY from JEFF-3.3 and decay data from ENDF/B-VIII.0.

V04: same as V03 but also it adds the new evaluated P_n values.

Main fissioning systems: ²³³U, ²³⁵U, ²³⁸U and ²³⁹Pu

$\beta_{\rm eff}$ results (ENDF/B-VIII.0)

Summary and conclusions

- $k_{
 m eff}$ shows **negligible effects** when modifying delayed neutron yields
- When new P_n values added, ν_d always incremented
- In both standard libraries, ν_d of ²³⁸U seems to be overestimated, when compared with experiment
- ENDF/B-VIII.0 shows slightly better agreement in $eta_{
 m eff}$
- Using FY from JEFF-3.3 and decay data from ENDF/B-VIII.0 in summation calculations seems to yield good results
- The $eta_{ ext{eff}}$ benchmark should be extended to more integral experiments

The future

• Towards JEFF-4

Challenges for evaluated data libraries

- Evaluated Best available knowledge for the user.
- Completeness All required data should be available to the user.
- Reliability Success should be independent of the application.
- Accuracy Uncertainties less than 5%, 2%, ... 0.3%.
- Covariances Users need to know how good the data are. They need to handle that knowledge quantitatively for propagating uncertainty and safe margins.

Best available knowledge.

Best science, as complete as we can, for applications

- Either from models or from experiment.
- Evaluators must judge which should prevail.
- We must master assembling files with best input for its parts.
- Checking is absolutely essential.
- Automation will continue to mature further as a means.

JEFF-4.0

First true general purpose file

Serving all needs Best physics estimates completeness in sections and incident particles

Methods of production to be reconsidered.

Combination of model estimates and best data. Take the TENDL approach as a starting point?

Variances, co-variances

Quality assurance of evaluations

automation of assembly, physics and format traceability

Serving a wide-range of user codes

automation and quality assurance of processing

correctness, validation, transparency,

Knowledge management

Is the essence of what we are trying to achieve: bring scientific and technological key developments to the users!

Our goals must be realistic.

A lot of scientific and technology oriented work has not made it to the files and modeling codes yet, no matter how good it is.

Our goals should also be ambitious! 'We shouldn't have to put up with that.'

Why JEFF?

Harbor the interests in our community.

Large scale modeling

- Nuclear systems design, development and performance estimates.
- Emphasis on safety analyses
- Design and interpretation of experiments for cost effective development.

Recognized SNETP/SRIA & SRA

Recognized EUROSAFE

Trends

- Nuclear safety & economy
- Nuclear waste
- Security and emergencies
- Decommissioning

Sources of data needs

- Projects
- HPRL
- Sensitivity analyses
- Literature

Challenging needs require

- High quality experiments
- High quality calculations
- Good equipment & facilities

Your contributions to JEFF

We want to build the bridge across the gap between science and application.

This requires a joint work of experiments, evaluations, benchmarking and validation.

Your contributions are needed on all these aspects as the responsibility to build the bridge is a joint one.

It will be stronger if we can build it together.

Method development

- Rizzo Darwin PIE ND-adjustment (CEA)
- Voirin from FY experiments to new evaluations (CEA/CNRS)
- Rochmann, Correlations from integral constraints
- Noguere, NRA, thermal constants, thermal scattering
- Bauge, Identify and eliminate sources of uncertainty in nuclear modeling
- Bouland, Interpretation of surrogate reaction data to improve modeling
- De Saint Jean, Influence of systematic uncertainties on evaluations
- Schnabel, Modern statistical tools for global nuclear model assessments
- Jansky, understanding Fe shielding benchmark (Rez, IPPE)

