ENDF/B-VIII.0

D. Brown for the Cross Section Evaluation Working Group

a passion for discovery

ENDF/B-VIII.0 was released on 2 Feb. 2018 by the Cross Section Evaluation Working Group (CSEWG)

iniversa

Integrates contributions for many sources

- Neutron Data Standards IAEA, NIST
- CIELO Pilot Project BNL led Fe, LANL led ¹⁶O and ²³⁹Pu, IAEA led ^{235,238}U
- Many new and improved neutron evaluations (DP, Crit. Safety, NE, USNDP)
- New thermal scattering libraries (Crit. Safety, Naval Reactors)
- Charged particles USNDP (LLNL)
- New atomic data (LLNL)
- Success rests on EXFOR library IAEA project but USNDP (BNL) coordinates compilation of reaction data for Western Hemisphere

* ENDF/B-I was released in June 1968 UNCLASSIFIED

ENDF/B-VIII.0 is our best performing and highest quality library yet

- Validate by simulating well characterized systems
 - Thousands of critical assembly benchmarks
 - 14 MeV & ²⁵²Cf(sf) source transmission
 - Many other tests
- Quality also assured by
 - ADVANCE continuous integration system at BNL
 - Annual Hackathons

M.B. Chadwick et al, Nuclear Data Sheets 148, 189 (2018)

Overall high quality in thermal and fast benchmarks

FIG. 29. (Color online) The distribution of C/E, in units of the combined benchmark and statistical uncertainty. The normal distribution (in black) would be the perfect situation.

Brookhaven Science Associates

Library and evaluations detailed in Nuclear Data Sheets vol. 148 (2018)

- ENDF/B-VIII.0: D. Brown et al., Nuclear Data Sheets 148, 1 (2018)
- Neutron Data Standards: A. Carlson et al., Nuclear Data Sheets 148, 143 (2018)
- CIELO Overview: M.B. Chadwick, et al., Nuclear Data Sheets 148, 189 (2018)
- CIELO Iron: M. Herman, et al., Nuclear Data Sheets 148, 214 (2018)
- CIELO Uranium: R. Capote, et al., Nuclear Data Sheets 148, 254 (2018)
- PFNS evaluation: D. Neudecker, et al., Nuclear Data Sheets 148, 293 (2018)
- ²³⁹Pu(n,g) measurement: S. Mosby, et al., Nuclear Data Sheets 148, 312 (2018)
- ²³⁵U PFNS measurement: M. Devlin, et al., Nuclear Data Sheets 148, 322 (2018)

Outline for remainder of talk

- We didn't "change anyone's answers"
- Big changes that "didn't change anyone's answers": ^{235,238}U, ²³⁹Pu, and H₂O
- Other important changes that "maybe changed answers": ¹⁶O, ^{nat}C, Fe, graphite

Happy 50th Anniversary!'

* ENDF/B-I was released in June 1968 UNCLASSIFIED

Outline for remainder of talk

- We didn't "change anyone's answers"
- Big changes that "didn't change anyone's answers": ^{235,238}U, ²³⁹Pu, and H₂O
- Other important changes that "maybe changed answers": ¹⁶O, ^{nat}C, Fe, graphite

* ENDF/B-I was released in June 1968 UNCLASSIFIED

There are many ways to "get the right answer"

BRC09 (CEA) $k_{eff}=1.00082(11)$ ENDF-VII.1 $k_{eff}=1.00060(12)$

How does k_{eff} change when a BRC09 value is replaced by one from ENDF-VII.1?

Quantity	Δk_{eff} (1000 th 's of %)
Fission	-138
Capture	+269
Elastic Scattering	-638
Inelastic Scattering	+522

The end result is a lack of confidence in modeling systems that significantly differ from the integral benchmark

- E. Bauge, et al. (CEA-DAM)
- Swap portions of one evaluation for other until completely swapped
- Elastic & inelastic
 scattering provided
 biggest swing

Figure from L. Bernstein

Situation "unchanged" in VIII.0

1.005 k_{eff} oectra +175 1.000 n,2n 0.995 Jezebel PST4 PMF1

Pu-239 CEA-CIELO to LANL-CIELO

FIG. 28. (Color online) Simulations of criticality k-eff for ²³⁹Pu for two critical assemblies: a fast assembly (Jezebel, PMF-1), and a thermal assembly (PST-4). This figure shows that both LANL CIELO-1 (ENDF/B-VIII.0) and CEA CIELO-2 (JEFF-3.3) predict similar k-eff values, but do so for very different reasons. The changes in criticality are evident when individual cross section channels are substituted between the two evaluations.

M. Chadwick *et al.*, Nuclear Data Sheets 148, 189 (2018)

Brookhaven Science Associates

- □ C/E
- SCALE 6.2 Covariance Library
- --- ENDF/B-VIII Beta 5 Covariance Library
- ENDF/B-VIII Beta 5 Covariance with SCALE 6.2

M. Williams, CSEWG meeting, Nov 2017 Brookhaven Science Associates

UNCLASSIFIED

NATIONAL LABORATORY

- □ C/E
- SCALE 6.2 Covariance Library
- --- ENDF/B-VIII Beta 5 Covariance Library
- ENDF/B-VIII Beta 5 Covariance with SCALE 6.2

M. Williams, CSEWG meeting, Nov 2017

Brookhaven Science Associates

UNCLASSIFIED

NATIONAL LABORATORY

Outline for remainder of talk

• We didn't "change anyone's answers"

 Big changes that "didn't change anyone's answers": ^{235,238}U, ²³⁹Pu, and H₂O

Happy 50th Anniversary!*

* ENDF/B-I was released in June 1968 UNCLASSIFIED

P(nu) for neutrons and gammas (Talou)

Neutron Data Standards:

(n,f) cross section

- Fission energy release (Lestone)
- PFNS & associated cov. (Neudecker)
- **PFGS new**, resolves long standing problem with fission gammas (Stetcu)
- Feedback from benchmarks
- Main differences: treatments of RR & Fast parts of evaluation

UNCI ASSIFIED

Brookhaven Science Associates

Large overlap in evaluations of Big 3

TABLE XXXII. Neutron Data Standards.

Each major ENDF release is built off the newest release of the Neutron Data **Standards**

Reaction	Standards Energy Range
H(n,n)	1 keV to 20 MeV
3 He(n,p)	0.0253 eV to $50 keV$
6 Li(n,t)	0.0253 eV to $1.0 MeV$
$^{10}\mathrm{B}(\mathrm{n},\alpha)$	0.0253 eV to $1 MeV$
$^{10}\mathrm{B}(\mathrm{n},\alpha_{1}\gamma)$	0.0253 eV to $1 MeV$
C(n,n)	10 eV to $1.8 MeV$
$\operatorname{Au}(\mathrm{n},\gamma)$	0.0253 eV, 0.2 to 2.5 MeV, 30 keV MACS
235 U(n,f)	0.0253 eV, 7.8-11 eV, 0.15 MeV to 200 MeV
238 U(n,f)	2 MeV to 200 MeV
$^{252}\mathrm{Cf}(\mathrm{sf})$	Prompt fission neutron spectra

Brookhaven Science Associates

D. Brown et al., Nuclear Data Sheets 148, 1 (2018)

Scattering data carefully reevaluated for 238U

FIG. 17. (Color online) Neutron-induced reaction cross sections on 238 U (top) and effect of the Engelbrecht-Weidenmüller transformation [179] on elastic and inelastic scattering on the first two excited levels of 238 U (bottom). Experimental data in the top panel have been taken from EXFOR [91].

- Dispersive OMP tuned to major actinides
- Proper treatment of (in)elastic mixing though E-W transform
- Proper compound angular distributions
- (n,n'g) data WAS NOT used

FIG. 18. (Color online) Calculated total and partial inelastic 238 U(n,n') cross sections on 45 keV level compared with experimental and evaluated data files. Experimental data have been taken from EXFOR [91].

R. Capote et al., Nuclear Data Sheets 148, 254 (2018)

UNCLASSIFIED

do/dΩ (b/sr)

²³⁹Pu received relatively smaller updates

- **Resonances from WPEC** SG-34, up to 2.5 keV
- Fast region not full evaluation
 - Capture fitted to new DANCE data (Mosby, et al.) & theory advances from Kawano

- Fission: new standards
- PFNS: evaluation based on Chi-Nu data
- Updated covariances

P. Talou CSEWG meeting 2017

 10^{0}

Light water used in LWR, PWR, many solution assemblies

Brookhaven Science Associates

Light water re-evaluated by Centro Atomico Bariloche (Argentina)

UNCL

Brookooven Science Associates H₂O (n,total)

- (b) H₂O (n,total) ENDF/B-VI.8 ------ENDF/B-VII.0 ENDF/B-VIII.0 B-VIII.0
- CAB Light water model
- Molecular diffusion using a modified Egelstaff²-Schofield diffusion model.
- A continuous spectrum derived from molecular dynamics simulations
- Alpha and beta grids were refined

FIG. 126. (Color online) Evaluated ${}^{1}\text{H}_{2}O(n, \text{tot})$ total cross section at different temperatures, compared with data measured by Stepanov *et al.* [339, 340] at 0.2266 meV. SSIFIED

Neptune Experiment Used for Validation of ENDF/B-VIII.0(β 5) H-H₂O TSL as a Function of Temperature

- Rolls-Royce conducted a series of critical experiments at the Neptune facility to validate the ability to predict criticality for water-isolated arrays as function of temperature [see Ref.].
- Configurations were neutronically similar to spent fuel storage racks without poison inserts in flux trap.
- Test was specifically designed to assess criticality safety issues for spent fuel rack configurations with water gaps.
- In this configuration, undermoderated fuel assemblies can have a positive temperature coefficient of reactivity.
- Water temperature varied from 20-60 °C

Schematic of Core and Detector Arrangement

FC = Fission Chamber SDA = ShutDown Amplifier Log = Log Channel PC = Pulse Channel WRL = Wide Range Linear RM = Reactivity Meter

Schematic of Fuel Arrangement Showing Increase in Effective Water Gap

Ref.: S. Walley et al., "Measurement of Positive Temperature Coefficients of Reactivity for Rack-like Arrangements of Reactor Fuel in the Neptune Zero Energy Facility," Proc. RRFM-2016, Berlin, March 13-17, 2016.

M. Zerkle CSEWG Meeting Nov. 2017

MC21 Calculated k_{eff} for Neptune Configuration C as a Function of Temperature Using ENDF/B-VII.1 Non-Moderator Libraries and Various H-H₂O TSL Libraries

M. Zerkle CSEWG Meeting Nov. 2017

Broo

Outline for remainder of talk

- We didn't "change anyone's answers"
- **Big changes that "didn't change anyone's answers":** ^{235,238}U, ²³⁹Pu, and H₂O
- Other important changes that "maybe changed answers": ¹⁶O, ^{nat}C, Fe, graphite

Happy 50th Anniversary!

* ENDF/B-I was released in June 1968 UNCLASSIFIED

New ⁵⁶Fe evaluation really aimed at improving steel

- ⁵⁶Fe
 - (CIELO)
- 54,57,58**Fe**
- ⁵⁹Co
- 58-62,64**N**i

- 12,13**C**
- (Neutron

Data

Standards)

Resonances in ⁵⁶Fe go back to Froehner

- Minor correction to the previous evaluations
- Fluctuations extend high in energy

Elastic & inelastic for 56Fe

Fluctuations imposed on inelastic scattering to the first and second excited states taken from experimental data Elastic obtained by subtracting the sum of all reactions from the total

Validation in critical assemblies

Validation in critical assemblies

TREAT reactor@INL restarted Nov 14, 2017: need graphite

- Graphite moderated
- Materials testing
- Shut down in 1994
- After
 Fukushima,
 interest in
 restarting

TREAT Reactor (wikimedia commons)

Brookhaven Science Associates

Graphite

Ideal "crystalline" graphite consists of planes (sheets) of

consists of planes (sheets) of carbon atoms arranged in a hexagonal lattice. Covalent bonding exits between intraplaner atoms, while the interplaner bonding is of the weak Van der Waals type. The planes are stacked in an "abab" sequence.

- Hexagonal Structure
- 4 atoms per unit cell
- a = b = 2.46 Å
- c = 6.7 Å
- Density = 2.25 g/cm³

Reactor graphite consists of ideal graphite crystallites (randomly oriented) in a carbon binder. It is highly porous structure with porosity level ranging between 10% and 30%.

Nuclear Graphite (SEM at NCSU) Density = 1.5 – 1.8 g/cm³

A. Hawari, Nov. 2017 CSEWG Meeting

Brookhaven Science Associates

Main message

ENDF/B-VII.1 was very good

- k_{eff}=1 is "baked in", which surprisingly is a problem for many customers
- k_{eff}=1 but with really big uncertainty does mean we biased the mean somehow, but were conservative with our uncertainty estimates
- ENDF/B-VII.1 was good, but ENDF/B-VIII.0 is much better
- There is still a lot of room for improvement
- Files available at <u>http://www.nndc.bnl.gov/endf/b8.0/</u> <u>download.html</u>

Brookhaven Science Associates

Happy 50 ± 1 Anniversary!*

* CSEWG formed in 1966 ENDF/B-I released in 1968

Brookhaven Science Associates