ENDF/B-VIII: What has changed so far?

D. Brown, National Nuclear Data Center, BNL

presented by M. Herman
So, what has changed and what hasn’t?

- CIELO evaluations
- TSL evaluations
- Many other ENDF evaluations
- V&V, QA
- New format

This is what gets us the amazing performance
So, what has changed and what hasn’t?

- CIELO evaluations
- TSL evaluations
- Many other ENDF evaluations
- V&V, QA
- New format

But many other applications need these
So, what has changed and what hasn’t?

- CIELO evaluations
- TSL evaluations
- Many other ENDF evaluations
- V&V, QA
- New format

This is how we insure good performance
So, what has changed and what hasn’t?

- CIELO evaluations
- TSL evaluations
- Many other ENDF evaluations
- V&V, QA
- New format

This is how we prepare for the future
CSEWG is a long standing collaboration between data users who, incidentally, are also the biggest content providers.
ENDF/B-VIII highlights

- **CIELO:**
 - ^{16}O
 - ^{56}Fe
 - ^{235}U
 - ^{238}U
 - ^{239}Pu

- **Neutron standards**
 - ^{1}H
 - ^{6}Li
 - ^{10}B
 - ^{197}Au

- **Structural materials:**
 - $^{12,13}\text{C}$
 - ^{40}Ca
 - ^{54}Fe, ^{57}Fe, ^{58}Fe
 - $^{58-61}\text{Ni}$
 - Yb, Dy, Os (JENDL4)
 - $^{63,65}\text{Cu}$
 - $^{182,183,184,186}\text{W}$
 - $^{174,176,178,179,180}\text{Hf}$
 - ^{132}Te

- **Other non-CIELO:**
 - n
 - ^{7}Be
 - ^{18}O (RUSFOND)
 - $^{35,37}\text{Cl}$
 - ^{59}Co
 - $^{73,74}\text{As}$
 - ^{78}Kr
 - ^{124}Xe
 - RQ Wright’s nubars
 - ^{40}Ar
 - ^{236m}Np
 - ^{240}Pu
 - EGAF gammas
 - Bug fixes
Bug fixes

- **Beta4**
 - 35,37Cl
 - 74As
 - 241Am

- **Beta5 (ENDF/A)**
 - 48Ti
 - 10Be
 - 180,181Ta
 - 185,187Re
Serious changes

- **Beta4**
 - 63,65Cu Covariances
 - 240Pu
 - Standards
 - CIELO

- **Beta5 ??**
 - Standards
 - CIELO
 - 53Cr?
240Pu

- **Resonances**
 - 2010 ORNL evaluation did not perform well, was rejected, but minor fix to bound level needed, V. Sobes made correction

- **Fast Region**
 - Fission cross section updated: Replaced by Tovesson 2009 data from 5.7keV to 40 keV (URR), Weston 40keV - 190keV.
 - Capture cross section taken from ENDF/B-VII.0 (=ENDF-B/VI.8), with an additional 2% reduction above 42 keV to improve
 - Elastic cross section taken from ENDF/B-VII.0 (=ENDF-B/VI.8). IAEA noted problem in URR, ave. capture restored to VI.1
Capture in URR
Final thermal constants

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Atlas</th>
<th>ENDF/B-VIII.0</th>
<th>ENDF/B-VII.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_γ</td>
<td>289.5 ± 1.4 b</td>
<td>289.4 b</td>
<td>287.5 b</td>
</tr>
<tr>
<td>σ_s</td>
<td>1.73 ± 0.10 b</td>
<td>1.73 b</td>
<td>0.95 b</td>
</tr>
<tr>
<td>σ_f</td>
<td>0.056 ± 0.030 b</td>
<td>0.056 b</td>
<td>0.064 b</td>
</tr>
<tr>
<td>σ_B</td>
<td>18.8 b</td>
<td>17.96 b</td>
<td>3.02</td>
</tr>
<tr>
<td>Wescott’s g-factor</td>
<td>1.0264</td>
<td>1.0259</td>
<td>1.0278</td>
</tr>
</tbody>
</table>
ENDF/B-VIII highlights, continued

- **Charged particles:**
 - p+d, p+\(^7\)Li, p+a, p+\(^{13}\)C, p+\(^{207}\)Pb
 - d+\(^7\)Li
 - t+a, t+\(^7\)Li
 - \(^3\)He+a, \(^3\)He+\(^3\)He
 - a+a

- **Decay data:**
 - \(^{93,95,96}\)Rb
 - \(^{95}\)Sr
 - \(^{82,83}\)Ge
 - \(^{95,98,98m,99}\)Y
 - \(^{88,89,90,91}\)Br
 - \(^{90}\)Kr
 - \(^{140,141}\)Cs
 - \(^{143}\)Ba
 - \(^{143,144,145}\)La
 - \(^{134}\)Sb
 - \(^{138}\)I

- **Thermal Scattering:**
 - Be(metal)
 - UO\(_2\) (x2)
 - Regular & reactor graphite
 - BeO (x2)
 - Polyethylene
 - SiO\(_2\) (x2)
 - SiC
 - Lucite
 - UN
 - Water: H\(_2\)O & D\(_2\)O (x2)
 - Water Ice Ih (x2)
 - YH\(_2\) (x2)

- **EPICS2014:**
 - photoat
 - electrons
 - atomic relax
Bug fixes

- **Beta4**
 - Be(metal)

- **Beta5 (ENDF/A)**
 - p+2H
 - D2O (D, O)
 - H2O (H)
Serious changes

- **Beta4**
 - Light charged particles
 - UN

- **Beta5 ??**
 - nothing planned
UN: New TSL evaluation from NCSU

- LEAPR from NJOY99.396
- 7 temps. (296K-120K)
- Inelastic uses Incoherent approx.
- Elastic uses generalized coherent approx. with modified LEAPR
Light charged particle evaluations

<table>
<thead>
<tr>
<th>Target:</th>
<th>p</th>
<th>d</th>
<th>t</th>
<th>h</th>
<th>α</th>
<th>6Li</th>
<th>7Li</th>
<th>Projectile:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>t</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>α</td>
</tr>
</tbody>
</table>

- Keep ENDF/B-VII.0
- Recommend ECPL in future
- Here ECPL to ENDF/B-VIII.0
p+\(^7\)Li

P. Navratil merged ECPL cross sections with fits in literature;
D. Brown added outgoing distributions from ECPL using inverse kinematics when needed.
$d + ^7\text{Li}$

$^7\text{Li}(d,2n)^7\text{Be}$

$^7\text{Li}(d,n+\alpha)^4\text{He}$

$^7\text{Li}(d,p)^6\text{Li}$

$^7\text{Li}(d,t)^6\text{Li}$
$t + ^7\text{Li} \ & \ ^3\text{He} + ^3\text{He}$

Graphs showing the cross-sections and S-factors for reactions involving ^7Li and ^4He.
Criticality Data Testing – Legacy LANL Assemblies

• Previous (e71) good bare assembly results are retained with e80β4 cross sections.

• Reflected assembly results are significantly improved.
Summary

- With E80β4 we have retained the good ENDF/B-VII.1 eigenvalue performance.
- The long-standing PST eigenvalue bias has been eliminated.
- Benchmarks with significant quantities of iron are calculated more accurately.
- Small trends in calculated eigenvalues over large energy intervals remain (HMF7, PMF suite).
- Reaction rate C/E values at high energy (e.g., n,2n reactions) remain poor.
ENDF/B-VIII planned for late FY17

6 year timeline
not to scale

Mini CSEWG Apr. 2016

WPEC May. 2016

ENDF Hackathon© 2016

CSEWG Nov. 2016

Mini-CSEWG 4-5 May 2017

WPEC 15-19 May 2017

beta5: covariance late spring 2017

beta6: release candidate summer 2017

ENDF/B-VIII.0 late summer 2017

ENDF/B-VII.0 contains 393 neutron evaluations;
1644 citations since 2006
(Google Scholar)

ENDF/B-VII.1 contains 423 neutron evaluations;
945 citations since 2011
(Google Scholar)
ENDF/B Quality Assurance

Pen-n-paper “Days of yore” (pre-2003)

Automated with ADVANCE (2011-present)

Where to find the link to ADVANCE

www.nndc.bnl.gov

Reactions tab

The link
ADVANCE quality assurance system for ENDF

- On every commit of every evaluation automatically:
 - Run it through a battery of tests, including customer codes
 - Generate comparison plots
 - Generate HTML report

- New in FY17:
 - Update Fudge-4.2.1 add PREPRO/GROUPIE
 - Aesthetic improvements (AJAX & MathJax)
 - Full library ACE file tarballs
 - Per-isotope error reports
 - Covariance and ACE overview
 - Rewrote INTER using FUDGE
To find out detailed lists of problems, go to ADVANCE, find your library’s release notes.

The link

ADVANCE