Status of the JENDL Project
Report to the WPEC Meeting, June 25-26, 2009, Port Jefferson, USA

J. Katakura
Nuclear Data Center
Nuclear Science and Engineering Directorate
Japan Atomic Energy Agency
Japanese Nuclear Data Committee

- Subcommittee on Nuclear Data (K. Shibata)
 - High Energy Nuclear Data Evaluation WG (N. Watanabe)
 - FP Nuclear Data Evaluation WG (K. Shibata)
 - ENSDF Group (H. Iimura)
 - Editorial Group of Nuclear Data News (T. Nakagawa)

- Subcommittee on Reactor Constants (N. Yamano)
 - Reactor Integral Test WG (M. Ishikawa)
 - Shielding Integral Test WG (N. Yamano)
 - WG on Preservation of Reactor Physics Experimental Data (T. Misawa)
 - Decay Heat Evaluation WG (T. Yoshida)
 - WG on Evaluation of Nuclide Generation (K. Suyama)
Recent Achievement

- Minor update of JENDL/AC-2008
 - ^{233}U, ^{234}U, ^{237}Np, ^{239}Pu, ^{241}Am, ^{242}Cm
 - Covariance data

- Progress of light, medium-heavy and FP nuclides data evaluation
 - Light nuclides
 - ^9Be, ^{10}B and ^{16}O
 - Resolved resonance parameters
 - $^{90,91}\text{Zr}$, ^{139}La, ^{133}Cs, etc.
 - Medium-heavy nuclides
 - ^{52}Cr, $^{56,57}\text{Fe}$, $^{63,65}\text{Cu}$, W etc.
Evaluation of Actinoid nuclides

- Covariance data
 - resonance parameters, fission cross sections, capture cross sections and number of prompt neutron
 - For 18 nuclides for 79 actinoid nuclides
 - CCONE + KALMAN

- Re-examination
 - ν_d: ^{233}U
 - ν_p: ^{239}Pu, ^{242}Cm
 - Resonance: ^{234}U, ^{237}Np, ^{239}Pu, ^{241}Am, ^{242}Cm
Covariances of actinoid nuclides

CCONE + KALMAN
Evaluation of light nuclides

- ^9Be
 - Total and elastic scattering cross sections in the energy region from 85 keV to 890 keV.

- ^{10}B
 - $^{10}\text{B}(n,t)^2\alpha$ reaction cross section for tritium production for PWR.

- ^{16}O
 - Total and elastic scattering cross sections using R-matrix theory below 3 MeV.
Total cross section of 16O

![Graph showing the total cross section of 16O as a function of incident energy.]
FP nuclides

- Resolved resonance parameters
 - $^{90,91}\text{Zr}$ and ^{139}La
 - New data from n_TOF experiments
 - ^{133}Cs
 - Feedback from PIE analyses for LWR

- Above resonance region
 - Calculation by CCONE
 - Ag, Cs, Eu, Gd and Dy isotopes
 - Calculation by POD
 - As, Se, Y, Zr, Nb and Mo isotopes
$^{109}\text{Ag}(n,p)$
$^{133}\text{Cs}(n,2n)$
Medium and heavy nuclides

- Newly evaluated data
 - ^{59}Fe and ^{59}Ni
 - $^{58}\text{Ni}(n,\gamma)^{59}\text{Ni}(n,\alpha)$ for radiation damage of stainless steel
 - $^{59}\text{Fe}(n,\gamma)^{60}\text{Fe}$ for astrophysics and radioactive waste ($T_{1/2}$ of $^{60}\text{Fe} = 1.5 \times 10^6 \text{ y}$)

- Re-evaluation
 - ^{52}Cr, $^{56,57}\text{Fe}$, $^{63,65}\text{Cu}$ and W isotopes
JENDL High Energy File

- Nuclear data of neutron- and proton-induced reactions up to 3 GeV for 106 nuclides.

<table>
<thead>
<tr>
<th>Priority (No.)</th>
<th>Nuclides</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st (39)</td>
<td>1H, 12C, 14N, 16O, 27Al, 50Cr, 54Fe, 58Ni, 63Cu, 180W, 196Hg, 204Pb, 209Bi, 235U</td>
</tr>
<tr>
<td>2nd (43)</td>
<td>9Be, 10,11B, 24,25,26Mg, 28,29,30Si, 39,41K, 40,42,43,44,46,48Ca, 46,47,48,49,50Ti, 51V, 55Mn, 59Co, 92,94,95,96,97,98,100Mo, 238,239,240,241,242Pu</td>
</tr>
<tr>
<td>3rd (40)</td>
<td>2H, 6,7Li, 13C, 19F, 23Na, 35,37Cl, 35,38,40Ar, 64,66,67,68,70Zn, 69,71Ga, 70,72,73,74,76Ge, 75As, 89Y, 181Ta, 197Au, 232Th, 233,234,236U, 237Np, 241,242,242m,243Am, 243,244,245,246Cm</td>
</tr>
<tr>
<td>4th (10)</td>
<td>15N, 18O, 74,76,77,78,80,82Se, 113,115In</td>
</tr>
</tbody>
</table>
Fission Yields

Based on the evaluation of ENDF file with some modification
- 60 fission types

Modification:
- Addition of ternary fission product yields
- Number of FP nuclides concides with that of JENDL FP Decay Data File
- Re-calculation of cumulative yields based on the decay chains of JENDL FP Decay Data File
Ternary Fission Yields

- Data from ENDF and JEFF
 - Element Yields (T.R. England and B.F. Rider)
 - Ratios of Mass Yields (R.W. Mills)
- Combining above data, nuclide yields from ^1H to ^7Li were calculated and included.
- Addition of some FP nuclides yields

$$FY(A,Z) = N \cdot \int_{z-0.5}^{z+0.5} \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-0.5\left(\frac{z-z_p(A)}{\sigma}\right)^2} \, dz$$

- $Z_p(A)$, σ and ratios of Isomer/Ground states: from England-Rider
Benchmark Tests for JENDL-4

- ZPPR,
- BFS,
- MOZART (ZEBRA),
- JOYO-MKI, MK-II,
- FCA,
- CIRABO (MASURCA)
- SEFOR
- LANL Small Reactors,
- PIE of MA Samples

- ICSBEP Benchmark (930 cases),
- IRPhEP Benchmark,
- TCA, FCA,
- STACY, TRACY,
- JRRs, HTTR,
- KUCA,
- TRX, KRITZ, VENUS, HTR10,
- MISTRAL, BASALA, FUBILA,
- PIE of LWR Spent Fuels

![Graph showing C/E (keff) vs. ICSBEP Benchmark (MIX-COMP-THERM) results]
PIE analysis for MA samples in JOYO-MKII

![Graph showing PIE analysis results for various MA samples in JOYO-MKII. The graph compares JENDL-3.3 and J-Actinide models.](Image)
Development of sensitivity analysis system

- Sensitivity of integral data (C/E) to nuclear data
- Sensitivity coefficients for various kinds of reactor systems
- For feedback to nuclear data evaluation
- Web based application
- To be completed by the end of FY2009

\[
\frac{\Delta R}{R} \approx \sum_i \left[S_i \times \frac{(\sigma_{2,i} - \sigma_{1,i})}{\sigma_{1,i}} \right]
\]

\(i = \text{nuclide, reaction, neutron energy etc.} \)
2008 Nuclear Data Symposium

- Held on the 20-21 of November, 2008 (78 participants)
- Organized and sponsored by Nuclear Data Division of AESJ.
- Tutorials
 - Nuclear data for reactor dosimetry and neutron spectrum adjustment method by T. Iguchi (Nagoya University)
 - Nuclear reaction model calculation code CCONE by O. Iwamoto (JAEA)
- Oral topics
 - Development of JENDL-4
 - Benchmark tests for JENDL-4
 - Other Nuclear Data Activities
- 23 poster presentations