Request ID	H464 (NEA=464)		Status of the request	Request to be checked	
Target	Reaction and process	Incident Energy	Secondary energy or angle	Target uncertainty	Covariance
93-NP- 237	(n,f) SIG,DE	200KeV- 20MeV	0	0	Y
Field	Subfield	Date Request created	Date Request accepted	Ongoing action	
Fission	fast reactors	11-MAY-15			

Requester: Dr Fredrik TOVESSON at LANL, USA

Email: tovesson@lanl.gov

Project (context): Los Alamos National Laboratory

Impact:

- The Np-237 fission cross section has impact for certain fast nuclear reactor designs. A sensitivity study by Aliberti et al. [1] pointed to a target accuracy of 8% for this cross section for Sodium-cooled Fast Reactor of the Gen-IV type (high level waste recycling).
- WPEC Subgroup-26 [2]: Present uncertainty (BOLNA) 6-8% from 0.5-6 MeV. Required uncertainty for an Accelerator Driven Minor Actinide Burner (ADMAB): 1.5-4 %.
- For many measurements the ²³⁷Np(n,f) is a reference cross section that is valuable on account of its low fission threshold and moderate activity.

Accuracy:

Uncertainties of 2-3%

Justification document:

There is a discrepancy of about 6-9% between a recent measurement performed by the n_TOF collaboration and ENDF/B-VII (C. Paradela et al. [3]).

The higher n TOF values are supported by a validation exercise by Leong et al. [4].

A recent independent result in the energy range from 4.8 to 5.6 MeV yields cross sections that in function of energy first agree with ENDF/B-VII and then with the n_TOF result (M. Diakaki et al. [5]). Independently an issue was recently found when cross sections for Pu-isotopes referred to the 238 U(n,f) cross section were compared to the same cross sections referred to the 237 Np(n,f) cross section in the same measurement arrangement (P. Salvador et al. [6]).

Comment from requester:

Comments from evaluator/experimentalist:

Comments for achieved accuracy:

Review comment:

The request is well motivated and of some concern also to reactor dosimetry when using spectral indices and/or reaction rates of 237Np fission chambers (IRDFF [7]).

Additional file attached:

References:

- [1] G. Aliberti et al., Annals of Nuclear Energy 33 (2006) 700–733.
- [2] M. Salvatores et al., Nuclear Science NEA/WPEC-26, www.oecd.org.
- [3] C. Paradela et al., Phys. Rev. C 82 (2010) 034601; Korean Physical Society 59 (2011) 1519.
- [4] L.S. Leong et al., Annals of Nuclear Energy 54 (2013) 36.

- [5] M. Diakaki et al, Nuclear Data Sheets 119 (2014) 52.
- [6] P. Salvador et al., Nuclear Data Sheets 119 (2014) 55.
- [7] International Reactor Dosimetry and Fusion File, https://www-nds.iaea.org/IRDFF/ (2014).