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Abstract

Two existing global medium-energy nucleon-nucleus phenomenological optical model potentials are de-

scribed and compared with experiment and with each other. The �rst of these employs a Dirac approach

(second-order reduction) that is global in projectile energy and projectile isospin and applies to the tar-

get nucleus 208Pb. Here the standard S-V (isoscalar-scalar, isoscalar-vector) model has been extended

to include the corresponding isovector components by introduction of a relativistic Lane model. The

determination of the energy range, energy dependence, and isospin dependence are discussed, as are

the predictions for neutron scattering observables, and also the correlations and ambiguities found in

Dirac phenomenology. The second of these employs a relativistic equivalent to the Schr�odinger equation

(including relativistic kinematics) that is global in projectile energy, projectile isospin, and target (Z,A).

Here, particular attention is given to predictions for the integrated scattering observables { neutron total

cross sections and proton total reaction cross sections { and their sensitivity to the absorptive parts of

the potential. Finally, current work is described and the in
uence of the nuclear bound state problem

(treated in relativistic mean �eld theory) on the Dirac scattering problem is mentioned. Spherical target

nuclei are treated in the present work and strongly-collective target nuclei (rotational and vibrational)

requiring coupled-channels approaches will be treated in a future paper.

A Global Phenomenological Dirac Potential

The potential described in this section consists of a global medium-energy nucleon-nucleus phenomenological

Dirac potential for the target nucleus 208Pb. The potential is global in projectile energy and projectile isospin

and it was determined [1] by least-squares adjustment of calculated scattering observables (model parameters)

with respect to corresponding measured scattering observables for both proton and neutron scattering over

a wide range in projectile energy.

The Dirac equation is used in the mean �eld approximation by which the nucleon (meson) �elds are replaced

by their expectation values. Proton-nucleus (or neutron-nucleus) scattering is then described using isoscalar-

scalar and isoscalar-vector mean �elds. Here these are taken, respectively, as a spherically symmetric complex

Lorentz scalar potential S0(r; E; :::) corresponding to the (�ctitious) � meson �eld and a spherically symmet-

ric complex Lorentz vector potential V0(r; E; :::) (time-like component of Lorentz four-vector) corresponding

to the ! meson �eld, together with a spherically symmetric Coulomb potential Vc.

However, a description of nucleon-nucleus scattering requires the explicit addition of isovector-scalar and

isovector-vector potentials (mean �elds) S1(r; E; :::) and V1(r; E; :::), respectively, yielding

S = S0 � � S1 (1)

V = V0 � � V1 (2)

� = 4 ~T � ~�=A = (N � Z)=A : (3)

In these equations S1 and V1 correspond to � meson and � meson mean �elds, respectively, and we use the

nuclear physics isospin convention: �3(neutron) = + 1

2
; �3(proton) = � 1

2
: Equations (1){(3) are a relativistic

generalization of the Lane model [2].

With this scalar-vector interaction including isospin the Dirac equation becomes (�h = c = 1)

[~� � ~p+ �fm+ Sg] = [E � V � Vc] (4)



where  is a four-component Dirac spinor with upper and lower components  U and  L ; E is the total

energy of the scattered nucleon in the c.m. frame, ~� and � are four Hermitian operators acting on the spin

variables alone (these are related to the Dirac 
 matrices), and  contains a two-component isospinor which

is an eigenvector of �3 appearing in S and V . A second-order reduction for the upper component  U yields

[p2 + Uc + Usof(~� � ~L)� i(~r � ~p)g] U = [(E � Vc)
2 �m2] U (5)

where the e�ective central potential Uc is given by

Uc = [2E V + 2mS � V 2 + S2 + Ucc]=2E (6)

the Coulomb correction term Ucc (numerator) is

Ucc = �2 Vc V (7)

and the spin-orbit term Uso is

Uso = �
1

2E

�
1

r

1

E +m+ S � V � Vc

@

@r
(S � V � Vc)

�
: (8)

It is worth noting that S and V appear both linearly and quadratically in the e�ective central potential Uc
leading naturally to the \wine-bottle"shapes required to describe medium-energy nucleon-nucleus scattering

somewhat below the transition region (where the sign of Uc changes) [3]. Also, the Coulomb correction and

spin-orbit terms both appear naturally in the Dirac formalism whereas they are ad hoc in the Schr�odinger

formalism.

Equation (5) is solved for the extensive 208Pb data set by making the following assumptions (due to tractabil-

ity and the fact that there exists much more proton data than neutron data): (1) the geometries of the

potentials are independent of projectile species and projectile energy, so that all energy dependence and

isospin dependence is contained in the strengths of the potentials, and (2) the same geometry exists for the

isoscalar and isovector components of a given potential. With these assumptions

U = U0(T; �) g(r) (9)

where U0 is a strength, T is the projectile kinetic energy in the laboratory system, and g(r) is a geometric

form factor taken to be a symmetrized Woods-Saxon shape (which has a closed-form Fourier transform)

given by

g(r) = [1 + exp

�
r � c

a

�
]�1 [1 + exp

�
�
r + c

a

�
]�1 (10)

where c and a are the radius and di�useness parameters, respectively, and c is assumed to be of the usual

form c = r0 A
1

3 with r0 constant and A the target mass number.

Energy dependence was studied by considering p + 208Pb scattering data only which implies that U0(T; �) =
U0(T ) ; and six forms of U0(T ) were tested :

U0(T ) = U0 (11)

= U0 + � T (12)

= U0 + � ln(T ) (13)

= U0 exp(�T=�) (14)

= U0 [1 + (T=�)2]�1 (15)

= U0 [1 + (T=�)2]�
1

2 (16)

The measured proton scattering observables used in studying the energy dependence consist of di�erential

elastic scattering cross sections d�=d
, analyzing powers Ay(�), spin-rotation functions Q(�), and total
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reaction cross sections �R, all as a function of laboratory proton energy Tp for the
208Pb target. Considering

experimental data over the range 80 to 800 MeV the minimum values of chi-square/point/energy (data set)

are shown in Fig. 1 for four of the six energy dependencies chosen for study [the other two, Eqs. (15) and

(16), yielded poorer results, on average, than the linear, log, or exponential energy dependencies]. The �gure

shows that no energy dependence is inadmissable and that none of the three energy dependencies shown is

admissable over the entire energy range shown. The results of reducing the proton energy range are shown in

Fig. 2 for these three energy dependencies. Clearly, a factor � 5 improvement in the total chi-square/point

is obtained by reducing the proton energy range from 80{800 MeV to 95{300 MeV. Note, however, that

the total chi-square/point is almost equivalent for the energy range of 95{500 MeV. The remainder of this

section addresses the smallest of these three energy ranges: 95{300 MeV.

The isospin dependence was studied by including the n + 208Pb scattering data (consisting of neutron

total cross sections �T as a function of laboratory neutron energy Tn) with the proton data, for the energy

range 95{300 MeV. Two energy dependencies were chosen to study the isospin dependence. These are the

logarithmic energy dependence, Eq. (13), which yields the best chi-square/point of all cases studied and

has an energy-independent isospin dependence by construction (as does the linear assumption which has

a slightly worse chi-square/point) and the exponential energy dependence, Eq. (14), which has an energy

dependent isospin dependence by construction. Thus, the two potential strengths tested are of the form

U0(T; �) = B � � C + � ln(T ) (17)

= [B � � C] exp(�T=�) (18)

where B; C, and � are the constants to be determined for each of the four terms of the complete complex

scalar-vector interaction potential. The chi-square minimization led to a logarithmic model that gives slightly

better �ts to the neutron data (�2tot(n)/point of 0.90 vs 0.95) and the proton data (�2tot(p)/point of 12 vs

13) than the exponential model and a total-chi square, �2tot/point, for combined neutron and proton data,

of 12.0 for the logarithmic model vs 12.8 for the exponential model. The best-�t potentials for these two

choices of the energy and isospin dependence, Eqs. (17) and (18), are given in Table I.

Table I. Best-�t Dirac global optical potentials for nucleon plus 208Pb

scattering in the energy interval 95 � T � 300 MeV.1

Logarithmic Model Exponential Model

Scalar Real SR = �570� 307�+ 23:1ln(T ) SR = (�491� 362�)exp(�T=5440)
r0 = 1:105 a = 0:692 r0 = 1:102 a = 0:700

Scalar Imag. SI = 237� 71:1�� 42:0ln(T ) SI = (52:6� 125�)exp(�T=164:2)
r0 = 1:157 a = 0:512 r0 = 1:153 a = 0:488

Vector Real V R = 532� 235�� 37:4ln(T ) V R = (399� 287�)exp(�T=1686)
r0 = 1:109 a = 0:664 r0 = 1:105 a = 0:676

Vector Imag. V I = �189� 54:2�+ 28:9ln(T ) V I = (�54:8� 60:4�)exp(�T=512:2)
r0 = 1:149 a = 0:633 r0 = 1:137 a = 0:647

Figures 3 and 4 show �ts to p + 208Pb data at 200 MeV using the proton-only potentials and the neutron-

plus-proton potentials (Table I) for both the logarithmic and exponential models. As can be seen, the �ts are

quite good for both models for both input data sets. In fact, on the basis of this 200 MeV proton data, one

cannot determine the preferred model and there appears to be only a slight preference for the neutron-plus-

proton input data over the proton-only input data. However, the �ts to the n + 208Pb total cross section

data for the identical two models and identical two input data sets, Fig. 5, show only qualitative agreement

in the case of the proton-only input data whereas quite good agreement is obtained in the case of the

neutron-plus-proton input data. In addition, the data indicate a slight preference for the logarithmic model

over the exponential model. Furthermore, the predictive power of the identical two models and identical two

input data sets is tested against n + 208Pb di�erential elastic cross section and analyzing power data at 155

1Strengths are in MeV and geometry is in fm; the upper (lower) signs refer to neutrons (protons).
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MeV [4] that were not included in the input data. Figure 6 shows that both potentials give similarly good

predictions, but that the analyzing power data clearly prefers the neutron-plus-proton input data. Thus,

Figs. 3{6 lead to the conclusions that a medium-energy phenomenological nucleon-nucleus potential may

be the best way to proceed and (somewhat weaker) that an isoscalar logarithmic energy dependence and

an isovector energy independence may be more physical than an exponential energy dependence for both

isoscalar and isovector components.

Given these conclusions the logarithmic model (Table I) was used to predict unmeasured neutron elastic

scattering angular distributions, analyzing powers, and spin-rotation functions at 100, 200, and 300 MeV [5].

These are shown in Fig. 7 for 100 MeV as are the corresponding predictions for proton scattering also using

the logarithmic model. The di�erences between the three observables for neutron and proton scattering,

at 200 and 300 MeV as well as 100 MeV, were studied by also performing calculations for a \gedanken"

projectile with potential strengths appropriate to a proton, but with the charge set to zero. The study

concluded that (a) the shift in the �rst minimum of the di�erential cross sections is due to the in
uence of

the Coulomb interaction, while the enhanced magnitude of the back-angle neutron cross sections results from

the di�erence in sign of the isovector strengths, (b) the saturation of the neutron analyzing powers (+1.0)

appears to come solely from the absence of the Coulomb interaction, and (c) the damping of the large-angle

oscillations of the neutron spin-rotation functions largely arises from the di�erence in sign of the isovector

strengths, although the absence of the Coulomb interaction plays some role.

Finally, the correlations and ambiguities found in Dirac phenomenology were studied [6] for a single case,

that of p + 40Ca at 181 MeV. Brie
y, two equivalent families of potentials are found, only one of which

predicts the correct total reaction cross section (the measured value was not used in determining the best-

�t parameterization), and has a just slightly lower �2 than that of the minimum in the other family. As

one might expect, relatively large ambiguities are found in the imaginary strengths and they are linearly

correlated. Also, the real geometries are particularly stable and the real strengths are also correlated, but

are much better determined than the imaginary strengths. The point to understand is that the observed

total reaction cross section is able to distinguish the correct Dirac phenomenological potential family.

A Global Phenomenological Schr�odinger Potential

The potential described in this section consists of a global medium-energy nucleon-nucleus phenomenological

relativistic Schr�odinger potential. The potential is global in projectile energy, projectile isospin, and target

(Z,A). It employs relativistic kinematics and a relativistic equivalent to the Schr�odinger equation obtained

by appropriate reduction of the Dirac equation for a massive energetic fermion (m; k) moving in a localized

central potential V (r) taken as the time-like component of a Lorentz four-vector. The resultant radial

equation for the partial wave fL(�) is given by (�h = c = 1)�
d2

d�2
+

�
1�

U(�)

Tc
�
L(L+ 1)

�2

��
fL(�) = 0 (19)

where � = kr, Tc is the total c.m. kinetic energy, L is the orbital angular momentum, and U(�) is the

renormalized total (nuclear plus Coulomb) optical potential

U(�) = 
 V (r) ; 
 = 1 +
Tc

Tc + 2m
: (20)

Equation (19) is formally identical to the radial equation for the solution of the non-relativistic Schr�odinger

equation for the analogous scattering problem. By way of example, Fig. 8 shows calculations of the proton

total reaction cross section for p + 27Al using Eq. (19) in three di�erent ways for the identical potential

V (r) : (1) non-relativistic (classical kinematics and 
 � 1), (2) relativistic kinematics (and 
 � 1), and

(3) relativistic equivalent Schr�odinger (relativistic kinematics and 
 > 1). Clearly, the 
 factor becomes

increasingly important as the projectile kinetic energy increases [Eq. (20)]. Option (3) is used in the

remainder of this section.

The starting point for determining this potential was the phenomenological proton optical-model potential

of Schwandt et al. [7] based upon di�erential elastic scattering cross sections and analyzing powers for the
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mass range 24 � A � 208 and proton laboratory kinetic energy range 80 � Tp � 180 MeV. The potential

employs standard Woods-Saxon form factors. The goals were to extend the mass range of the potential to

12 � A � 208, to extend the energy range of the potential to 50 � Tp � 400 MeV, and to transform the

extended proton potential to a neutron potential for the same mass and energy ranges. Moreover, optimal

reproduction of the measured integrated scattering observables, the proton total reaction cross section �R
and the neutron total cross section �T , was the main focus of the work.

The approach used was to (a) adjust only the parameters of the proton central absorptive potential to

optimally reproduce the measured total reaction cross sections, (b) perform these adjustments allowing only

small changes in the calculated d�=d
 and Ay(�), and (c) transform the extended proton potential to the

corresponding neutron potential by use of the Lane model [2] and accounting for the Coulomb correction.

[Since the proton starting potential [7] does not explicitly contain a Coulomb correction term it is assumed

that the term is implicitly present and, therefore, that it must be subtracted from the corresponding neutron

potential. The correction is taken as 0:4Z=A
1

3 .] The work was performed by iterative computation, that is,

a generalized nonlinear least-squares adjustment algorithm was not used,2 for three nuclei spanning a large

mass range: 27Al, 56Fe, and 208Pb. The resultant potential gave reasonably satisfactory predictions for both

proton and neutron scattering observables for other target A values in the same range [8]. Further iterative

computations were performed for six additional nuclei: 12C, 16O, 40Ar, 81Br, 107Ag, and 138Ba. The nine

total extracted values of the imaginary di�useness parameter aI , for Region II of the potential, were then

�t by an expansion in powers of A
1

3 as shown in Fig. 9 [9]. With this result, the current parameterization

of the potential is given in Table II. An example using the potential is given in Fig. 10 for the integrated

observables of 56Fe and where \Modi�ed potential" refers to Table II.

Lessons from the Construction and Use of the Two Potentials

Several conclusions (some of them tentative) come from the work summarized above. First, the medium-

energy phenomenological optical potential is very forgiving, just like the low-energy phenomenological po-

tential. In particular, several di�erent projectile energy dependencies appear tractable (linear, logarithmic,

exponential, . . . ) provided the total energy range is not excessive. Also, in a Schr�odinger phenomenol-

ogy, relatively small adjustments can be made in the parameters of the absorptive potential to improve

agreement with the integrated observables without catastrophic consequences for the di�erential elastic and

spin-dependent observables. In addition, it appears possible to obtain approximately smooth

Table II. Schr�odinger global optical potential for nucleon{nucleus scattering

in the target mass range 12 � A � 208 and in the projectile

energy range 50 � T � 400 MeV.3

2For this reason the results have not been submitted for publication in a refereed journal.
3Strengths are in MeV and geometry is in fm; the upper (lower) signs refer to neutrons (protons); �3 is de�ned just below

Eq. (3).
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Real Central VR = 105:5[1� 0:1625ln(T )]� 16:5[(N � Z)=A]� ( 1
2
+ �3)(0:4Z=A

1

3 )

rR = 1:125 + T=103 ; T � 130

rR = 1:255 ; T > 130

aR = 0:675+ 3:1T=104

Imag. Central WV = 6:6 + 2:73(T � 80)=102 + 3:87(T � 80)3=106 ; T � 140

WV = 7:314 + 0:0462T ; T > 140

rI = 1:65� 2:4T=103 ; T � 140

rI = 1:17 ; T > 140

aI = 0:27 + 2:5T=103 ; T � 140

aI = 0:3537+ 0:08451A
1

3 � 0:001835A
2

3 ; T > 140

Real Spin-Orbit VSO = 19:0[1� 0:166ln(T )]� 3:75[(N � Z)=A]

rV SO = 0:920+ 0:0305A
1

3

aV SO = 0:768� 0:0012T ; T � 140

aV SO = 0:60 ; T > 140

Imag. Spin-Orbit WSO = 7:5[1� 0:248ln(T )]

rWSO = 0:877+ 0:0360A
1

3

aWSO = 0:62

energy dependencies of the various observables with piecewise (continuous and discontinuous) parameteriza-

tions. [Note that this is not always the case for the transmission coe�cients.] The Schr�odinger phenomenol-

ogy of Table II contains such parameterizations because the starting potential [7] was constructed in this way.

In general, however, piecewise parameterization should clearly be avoided. Second, a Dirac phenomenology

may provide physically realistic potentials over a wider projectile energy range than a Schr�odinger phe-

nomenology because the e�ective central potential in a second-order reduction involves squares and cross

terms of the form factors appearing. This allows, for example, a \wine-bottle" shape. Third, in a Schr�odinger

phenomenology employing Woods-Saxon form factors, it appears that small adjustments in the imaginary

di�useness parameter aI can �ne tune the integrated observables with a minimal impact on the other observ-

ables. Perhaps the same is true in Dirac phenomenology? Fourth (and last), given the extreme sparseness of

experimental medium-energy neutron scattering di�erential elastic and spin-dependent observables, a Dirac

or relativistic Schr�odinger phenomenological approach that is global in (1) projectile energy, (2) projectile

isospin, and (3) target (Z,A), and uses the existing medium-energy proton and neutron (total cross sections)

databases, appears to be a tractable way to calculate physically realistic neutron elastic scattering observ-

ables over wide ranges in energy and target. Whether a Dirac or relativistic Schr�odinger formalism should

be used has yet to be determined.
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Current Work

Because a satisfactory global medium-energy nucleon-nucleus optical potential does not yet exist we are

continuing our work on this goal. Currently, we are addressing an energy range of (perhaps) 20 MeV to

(perhaps) 2000 MeV and a (spherical) target mass range of 16 to 209. The experimental database (currently

over 20000 points) consists of the sets fd�=d
; �R; Ay; Qg for protons and f�T , some d�=d
 and Ayg for

neutrons. Our approach is to consider both relativistic Schr�odinger and Dirac phenomenology with the

identical database in a nonlinear least-squares adjustment algorithm. Piecewise parameterizations will be

inadmissable. We will also address a microscopic Dirac approach for the same ranges employing proton and

neutron densities from recent work on the nuclear bound state problem using a relativistic Hartree approach

[10]. Here, only even-even target nuclei will be considered. This topic is particularly exciting because the

relativistic Hartree approach that we use is easily extended to relativistic Hartree-Fock [10] and, perhaps

more importantly, we have discovered that our coupling constants are mostly natural (of order unity) when

our Lagrangian is rewritten in a form that is based upon QCD scaling and chiral symmetry [11] and whose

validity demands naturalness.
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Figure Captions

Fig. 1 �2/point/data set for p + 208Pb scattering in the energy range 80{800 MeV for four energy depen-

dencies.

Fig. 2 �2tot/point for p + 208Pb scattering in three energy ranges for three energy dependencies.

Fig. 3 Di�erential elastic cross sections for p + 208Pb scattering at 200 MeV in the logarithmic and expo-

nential models. The solid curves are obtained in calculations that use the Dirac global potential (Table

I) which has been determined by simultaneously �tting neutron and proton data. The dashed curves

are from calculations using a Dirac global potential in which only proton data have been �t.

Fig. 4 Spin observables for p + 208Pb scattering at 200 MeV in the logarithmic and exponential models.

The solid and dashed curves have the same explanation as in Fig. 3.

Fig. 5 Total cross sections for n + 208Pb scattering from 95 to 250 MeV in the logarithmic and exponential

models. The solid and dashed curves have the same explanation as in Fig. 3 and the dotted curve is

the prediction of a geometric black disk model.

Fig. 6 Di�erential elastic cross sections and analyzing powers for n + 208Pb scattering at 155 MeV in the

logarithmic and exponential models. The solid and dashed curves have the same explanation as in Fig.

3. The calculations shown are predictions as the experimental data were not used in determining the

potentials.

Fig. 7 Di�erential elastic cross sections and spin observables for nucleon-plus-208Pb scattering at 100 MeV

as predicted by the Dirac global logarithmic potential (Table I). The solid curves are the predictions

for neutron scattering while the dashed curves are the predictions for proton scattering.

Fig. 8 Calculations of the proton total reaction cross section for the p + 27Al reaction using the Schr�odinger

formalism, Eq. (19), in three di�erent approaches with the identical optical potential.

Fig. 9 Empirical values of and polynomial �t to the imaginary di�useness parameter aI for Region II

(Tp > 140 MeV) of the Schr�odinger global potential of Table II.

Fig. 10 Comparisons of measured and calculated integral scattering observables from the nucleon-plus-56Fe

reaction using the Schr�odinger formalism. The original potential is that of Schwandt et al. [7] and the

modi�ed potential is that of Table II.
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