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Abstract

Energy dependence of the ratio of the isovector and isoscalar strengths in the

imaginary part of the nucleon optical model potential at the medium energy

range was extracted from an analysis of proton and neutron induced total

reaction cross sections on 11Li with a theoretical framework called quantum

molecular dynamics (QMD). The isovector/isoscalar ratio was found to be

about 0.8 at 100 MeV, and decreased almost linearly in log(E) to 0 at several

hundred MeV. This result was consistent with an estimate at lower energy,

and was also in good accord with the values used by Kozack and Madland for

the analysis of nucleon + 208Pb reactions.

I. INTRODUCTION

In recent years, the intermediate-energy nuclear reactions have come to be more and

more important for various reasons related with not only the basic but also the applied

research �elds [1]. It is obvious that the optical model potential (OMP) remains to be an

important quantity in the researches of nucleon-induced nuclear reactions at medium energy

range as was the case at the lower energy region.

The nucleon optical potential has been studied intensively in the past by many authors

from many points of view [2{19]. It is known that the proposed potentials give excellent re-

sults in many cases. However, it is also recognized that they are still far from perfect in many

aspects, and there are many ambiguities which prevent the OMP to be de�ned uniquely. If

we look into the status of the imaginary isovector part of the OMP, the situation seems to

be particularly poor: In the low energy region where the surface absorption is dominant, the

strength of the surface imaginary isovector potential is distributed in the range from 9 MeV

[10] to 16 MeV [9]. This shows that the imaginary isovector strength has an ambiguity as

large as a factor of 2 in spite of the huge e�orts to de�ne the potential at low energy region

where both the neutron and proton data are available. At the intermediate energy region

where the volume absorption becomes dominant, the proposed global potentials do not give

the isovector volume imaginary potential explicitely [3{12] (except one by Kozack and Mad-

land [13]). This is against the idea of the Lane model [20] (and its relativistic extention

[21]) on which the OMPs have been based. It is true that the di�erence of the nucleon-

nucleon (N-N) interaction between the identical (p-p, or n-n) and non-identical (p-n) pairs
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of nucleons, that is the origin of the isovector term in OMP, becomes smaller and smaller

as energy increases, and �nally reaches to zero at several hundred MeV. This fact, together

with small asymmetry ((N � Z)=A) range spanned by most of the stable nuclei, may make

the net e�ect of the isovector part less and less signi�cant in the intermediate-energy region.

However, it cannot be a justi�cation of ignoring the imaginary isovector term from the basic

point of view.

For exotic nuclei such as 11Li, the e�ects of imaginary isovector term will be signi�cant

because they have large asymmetry parameters. In the case of 11Li, there are 8 neutrons

and only 3 protons. Due to the big di�erence between the proton and neutron numbers,

the isovector e�ects will be magni�ed in these nuclei. Furthermore, these exotic nuclei are

known to have an outer region consisting only of neutrons, i.e., the neutron halo or neutron

skin [22]. Due to this structure, the incident particles will interact �rstly with only neutrons,

so it is expected for these nuclei to respond quite di�erently depending on the (z-component

of the) projectile isospin. Therefore the e�ects of the isospin-dependent N-N interaction will

still be noticeable for such exotic nuclei at intermediate energy while the Coulomb correction

is kept to be negligible.

It is the basic idea of this work to use the feature of the exotic nuclei as an ampli�er of

the isospin-dependence in the N-N interaction to investigate the imaginary isovector OMP.

For this aim 11Li was selected as the target nucleus, and the total reaction cross sections for

neutron and proton projectiles were calculated by a theoretical framework called quantum

molecular dynamics (QMD) [23{25]. We use a QMD framework developed at JAERI [26],

which has been used intensively for investigations of light-ion induced reaction mechanisms

at intermediate energy region [27{30]. This framework, however, was not satisfactory in

several senses. We then modi�ed it for the present purpose as 1) to be Lorentz covariant

[31], 2) to include the momentum dependence in the e�ective N-N interaction, 3) to include

the Pauli potential to simulate the Fermion nature of the nucleon system better, and 4) to

include a revised N-N collision term. As a check of the new framework, we have carried out

an analysis of total reaction cross sections for carbon target with various kinds of projectiles,

including 11Li, for which experimental data are available.

II. BRIEF EXPLANATION OF THE QMD

The details of the formulation we adopted will be given elsewhere [32], so only a simple

explanation is given in this paper. We start from representing each nucleon (denoted by a

subscript i) by a Gaussian wave packet in both the coordinate and momentum spaces. The

total wave function is assumed to be a direct product of these wave functions. Thus the

one-body distribution function is obtained by the Wigner transform of the wave function,

f(r;p) =
X
i

fi(r;p) =
X
i

8 � exp
"
�(r�Ri)

2

2L
� 2L(p�Pi)

2

�h2

#
(1)

where L is a parameter which represents the spacial spread of a wave packet, Ri and Pi

corresponding to the centers of a wave packet in the coordinate and momentum spaces,

respectively. The equation of motion of Ri and Pi is given, on the basis of the time-

dependent variational principle, by the Newtonian equation:
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_Ri =
@H

@Pi

; _Pi = � @H

@Ri

; (2)

and the stochastic N-N collision term [26,36]. The Hamiltonian H was taken to be a sum of

the zero-th component of the 4-momentum vector of each particle [31]:

H =
X
i

p0i =
X
i

q
P 2
i +m2

i + 2miUi (3)

The scalar potential Ui consists of the Skyrme-type e�ective N-N interaction [35], Coulomb

and symmetry energy terms, the Pauli potential and the momentum-dependent potentials:

Ui =
1

2

A

�0
< �i > +

1

1 + �

B

��0
< �i >

� +
1

2

X
j(6=i)

ci cj
e2

�~qij
erf

�
�~qij=

p
4L
�

+
Cs

2�0

X
j(6=i)

(1� 2jci � cj j) �ij +
X
j(6=i)

VPauliij

+
V (1)
ex

2�0

X
j(6=i)

1

1 + [�~pij=�1]
2 �ij +

V (2)
ex

2�0

X
j(6=i)

1

1 + [�~pij=�2]
2 �ij (4)

where "erf" denotes the error function, and ci is 1 for proton, and 0 for neutron. Other

symbols in this equation are de�ned as

< �i > =
X
j 6=i

�ij =
X
j 6=i

Z
dr�i(r)�j(r)

=
X
j 6=i

(4�L)�3=2 exp
h
��~q2ij=4L

i

�i =

Z
dp

(2��h)3
fi(r;p)

VPauliij =
1

2
VP

"
�h

q0p0

#3
exp

"
�
�~q2ij

2q20
�

�~p2ij

2p20

#
��i�j��i�j

�~q2ij = ��q2ij +
(�qijpij)

2

pij

�~p2ij = ��p2ij +
(�pijpij)

2

pij
(5)

and

�qij = qi � qj

�pij = pi � pj

pij = pi + pj (6)

The qi and pi are the coordinate and momentum of particle i in the 4-vector representation,

respectively. It is easy to note that the variables �~q2ij and �~p2ij de�ned above are Lorentz

scalars. In addition, this form of Hamiltonian gives the equation-of-motion equivalent with

the Relativistic QMD [33,34] with a special choice of the time-�xation [31].
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The parameters in the above Hamiltonian were determined to reproduce the saturation

dentisy � = �0 = 0:168 fm�3, minimum energy E/A = -16 MeV, the energy dependence

of the real optical model potential, and the e�ective mass m�=m = 0.8 at the Fermi surface.

Furthermore, the parameters of the Pauli potential were chosen for the kinetic energy of

the QMD to be equal to the total energy of the free Fermion systems [24]. From these

conditions, the following values were determined: A = -127.68 MeV, B = 204.28 MeV, �

= 4/3, Cs = 25 MeV, V (1)
ex = -258.54 MeV, V (2)

ex = -375.60 MeV, �1 = 2.35 MeV, �2 = 0.4

MeV, L = 1.75 fm2, Vp = 140.0 MeV, p0 = 120.0 MeV, and q0 = 1.644 fm.
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Fig. 1 Energy dependence of the real part of OMP Fig. 2 Binding energy per nucleon

Fig. 1 shows the energy dependence of the real part of the OMP. The solid curve shows

the potential depth calculated from Eq. (4) without the Coulomb and the Pauli potentials.

It is understood that the present parameterization reproduces the energy dependence of real

OMP obtained experimentally [12] fairly well. The binding energies per nucleon of several

stable nuclei calculated with QMD are compared with experimental data in Fig. 2. This

�gure shows that the QMD calculation gives a very good description of such basic nuclear

structure information.
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Fig. 3 Nucleon density distribution of 11Li Fig. 4 Transverse momentum distribution of 9Li

from the 11Li + C reaction at 790 MeV/A

The nucleon density distribution of 11Li is shown in Fig. 3 with the experimental data

[22]. The smooth curve denotes the nucleon distribution calculated by QMD while the broken

curves denote the upper and lower bounds of the experimental uncertainty [22]. In the same

4



�gure, we show the "particle" distribution by the histogram, which means the distribution

of the center of the Gaussian wave packets. The "particle" distribution shows the existence

of valence neutrons outside a core (9Li). The neutron halo structure is reproduced well

by the present calculation. The binding energy for 11Li was calculated to be 44.89 MeV,

which is consistent with the experimental value of 45.54MeV. Fig. 4 shows the transverse

momentum of 9Li for the reaction 11Li + C at 790 MeV per nucleon. The 2 components

in the experimental data by Tanihata et al. [22] are reproduced excellently by the QMD

calculation.

III. CALCULATION OF REACTION CROSS SECTIONS FOR 12C TARGET AS A

VERIFICATION OF THE COMPUTATIONAL METHOD

The reaction cross section was calculated based on the following formula, which is equiv-

alent with the optical limit of the Glauber approximation:

�R = 2�

Z
b(1� T (b))db (7)

where the T (b) denotes the transparency, i.e., the probability that the projectile having

the impact parameter b causes no interaction with the target nucleons. In the Glauber

approximation, such quantity is evaluated along a straight line trajectory, while in QMD it

is calculated on a more realistic trajectory determined by the mean-�eld described by the

e�ective two-body potential Eq.(4) including the Coulomb interaction.
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Fig. 5 Total reaction cross sections of 12C for incident proton (left-top), deuteron

(left-bottom), � (right-top) and 12C (right-bottom).
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The reaction cross sections for 12C were calculated for projectiles of proton, deuteron, �

and 12C, and are shown in Fig. 5 with experimental data [37{40]. These �gures con�rm that

the QMD gives satisfactory descriptions of the reaction cross sections of various projectiles

on carbon even though no parameter was adjusted for this purpose. The only exception is

the case of d + 12C for which the QMD overestimates the reaction cross section noticeably.

The reason of this was found to be related with the stability of deuterium in the QMD

simulation: Deuterium is a nuclei in which a proton and neutron bind each other with the

biding energy of 1 MeV per nucleon. Such system is not stable enough in QMD calculation,

so it breaks into a neutron and proton when it reaches to the carbon target and feels the

mean-�eld (real OMP) of the target without causing any N-N collision (which is the origin

of the imaginary OMP). In other cases, it could be concluded that the QMD calculation to

be reliable.

The total reaction cross sections for 12C target induced by several Li isotopes are shown

in Fig. 6. Again, the QMD calculation reproduces the basic feature of the experimental

data [41,42]. The agreement is particularly good for 11Li on 12C case.
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Fig. 6 Total reaction cross sections of 12C for incident ALi, where A = 6, 7, 8, 9 and 11.

IV. EXTRACTION OF THE ISOVECTOR/ISOSCALAR RATIO OF

IMAGINARY NUCLEON OMP AT INTERMEDIATE ENERGY

Based on the success of the previous section, we proceed to extraction of the isovec-

tor/isoscalar ratio of the imaginary OMP. Firstly we de�ne a quantity � to be

� � �R(p) � �R(n)

�R(p) + �R(n)
(8)

where �R(i) denotes the total reaction cross section for incident particle i. The quantity

� was calculated at 100, 200, 400 and 800 MeV for 11Li target by QMD, and is shown in

Fig. 7. This quantity is found to be about 0.27 at 100 MeV, so the isospin dependence

in the N-N collision really a�ects the total proton and neutron cross sections signi�cantly.

Such di�erence, however, becomes smaller and smaller as energy increases, and the e�ect is

negligible at several hundred MeV. This is an intuitively understandable behavior.
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Then, we take the 1st order expansion of �R with respect to the imaginary OMP (W )

around W0;

�R(W = W0 � �W1) = �R(W0)� �W1

@

@W
�R(W0) (9)

where + applies to incident protons and - to neutrons, W0 denotes the imaginary isoscalar

strength, the W1 the isovector strength, and � � (N � Z)=A. By using this formula, the

quantity � can be written also to be

� =
�W1

@
@W

�R(W0)

�R(W0)
(10)

The ratio W1/W0 is calculated by putting the 2 �'s in Eqs. (8) and (10) equal;

W1

W0

=
�R(p) � �R(n)

�R(p) + �R(n)

�R(W0)
@
@W

�R(W0)

1

�W0

(11)

The �rst factor of the right hand side was already obtained by the QMD calculation (Fig.

7). We have then calculated the 2nd factor by employing the following classical expression

for �R obtained with the Glauber approximation for uniform sphere of radius R [43,44],

�R(W ) = �R2

 
1� 2

1� (1 + 2RkW=E)e�2RkW=E

(2RkW=E)2

!
(12)

where k denotes the wave number and E the projectile energy. The imaginary isoscalar

strength W0 was taken from Finlay's parameterization [45],

W0 = 6:6 +
15:353(E � 80)2

(E � 80)2 + 137:82
(13)

The ratio W1=W0 calculated based on Eq. (11) is shown in the left part of Fig. 8.

This �gure shows that the ratioW1=W0 has a value of about 0.8 at 100 MeV, then decreases

almost linearly in log (E), and reaches to 0 at several hundred MeV. This energy dependence

is consistent with that of the di�erence of the cross sections between the identical and non-

identical pairs of nucleons. The error bar was obtained from the statistical uncertainty in

the factor �, and by assuming (rather extremely) the error of W0 to be 50 %. The main

source of error comes from the uncertainty in W0 at 100 MeV, while the statistical error is

dominant at 800 MeV. Anyway, the results are rather insensitive to the choice of the W0

parameter.

In the right part of Fig. 8, the low-energy limit of this ratio was calculated with the

Walter-Guss potential [8] at 10 MeV, and plotted with the presently obtained results. The

energy dependence obtained in this work extrapolates smoothly to the lower energy value.

The result calculated from the parameters of Kozack and Madland [13] are shown by the

dash-dotted curve in the same �gure. These values were obtained by adding the (Lorentz)

scalar and vector imaginary potential strengths for each of the isoscalar and isovector com-

ponents. Their value is slightly higher than the present estimate at 100 MeV. However,

these 2 curves become closer as energy increase, and �nally they are consistent at 300 to

400 MeV region.
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Fig. 7 The quantity � (de�ned in Eq. (8)) calculated by QMD for 11Li
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Fig. 8 The isovector / isoscalar ratio for imaginary nucleon OMP derived as Eq. (11). The left

�gure shows present result, while the right one includes the lower-energy estimate [8] and values

used by Kozack and Madland [13].

V. CONCLUDING REMARKS

A QMD (quantum molecular dynamics) framework was used to extract information

on the imaginary isovector term in the intermediate-energy nucleon OMP. The 11Li was

selected as an ampli�er of the isospin-dependence in the nucleon-nucleon interaction which

is the origin of the isovector potential. The di�erence in the reaction cross sections induced

by neutron and proton on 11Li indicated that the imaginary isovector potential plays a

noticeable e�ect on the observables for such exotic nuclei at intermediate energy. The

present result were found to be consistent with a lower energy estimate and with the values

used by Kozack and Madland for the analysis of N + 208Pb observables.

The results of the present work are still preliminary and to be revised in future works.

8



REFERENCES

[1] e.g., H. Yasuda, T. Tone and M. Mizumoto (Ed.), The First Workshop of Neutron

Science Research Program, JAERI-conf 96-014(1996).

[2] e.g., P.E. Hodgson, The Nucleon Optical Model, World Scienti�c (1994).

[3] R.L. Varner, W.J. Thompson, T.L. McAbee, E.J. Ludwig and T.B. Clegg, Phys. Rep.

201, 57(1991).

[4] B.A. Watson, P.P. Singh and R.E. Segel, Phys. Rev. 182, 977(1969).

[5] F.D. Becchetti, Jr. and G.W. Greenlees, Phys. Rev. 182, 1190(1969).

[6] A. Nadasen, P. Schwandt, P.P. Singh, W.W. Jacobs, A.D. Bacher, P.T. Debevec, M.D.

Kaithuck and J.T. Meek, Phys. Rev. C23, 1023(1981).

[7] P. Schwandt, H.O. Meyer, W.W. Jacobs, A.D. Bacher, S.E. Vigdor, M.D. Kaitchuck

and T.R. Denoghue, Phys. Rev. C26, 55(1982).

[8] R.L. Walter and P.P. Guss, Proc. Int. Conf. on Nuclear Data for Basic and Applied

Sciences, Santa Fe, N.M., U.S.A. Gordon and Breach, p.1079(1986).

[9] J.H. Dave and C.R. Gould, Phys. Rev. C28, 2212(1983).

[10] J. Rapaport, V. Kulkarni and R.W. Finlay, Nucl. Phys. A330, 15(1979).

[11] E.D. Cooper, B.C. Clark, R. Kozak, S. Shim, S. Hama,J.I. Johansson, H.S. Scherif, R.L.

Mercer and B.D. Serot, Phys. Rev. C36, 2170(1987).

[12] S. Hama, B.C. Clark, E.D. Cooper, H.S. Scherif and R.L. Mercer, Phys. Rev. C41,

2737(1990).

[13] R. Kozack and D.G. Madland, Nucl. Phys. A509, 664(1990).

[14] F. Perey and B. Buck, Nucl. Phys. 32, 79(1962).

[15] D. Wilmore and P.E. Hodgson, Nucl. Phys. 55, 673(1964).

[16] B.C. Clark, S. Hama, R.L. Mercer, L. Ray, G.W. Ho�mann, and B. Serot, Phys. Rev.

C28, 1421(1983).

[17] J.-P. Jeukenne, A. Lejeune and C. Mahaux, Phys. Rev. C 16, 80(1977).

[18] F.A. Brieva and J.R. Rock, Nucl. Phys. A291, 317(1977).

[19] N. Yamaguchi, S. Nagata and T. Matsuda, Prog. Theor. Phys. 70, 459(1983).

[20] A.M. Lane, Nucl. Phys. 35, 676(1962).

[21] B.C. Clark, S. Hama, E. Sugarbaker, M.A. Franey, R.L. Mercer, L.Ray, G.W. Ho�mann

and B.D. Serot, Phys. Rev. C30, 314(1984).

[22] I. Tanihata, T. Kobayashi, T. Suzuki, K. Yoshida, S. Shimoura, K. Sugimoto, K.

Matsuta, T. Minamisono, W. Christie, D., Olson and H. Wieman, Phys. Lett. B287,

307(1992).

[23] J. Aichelin, G. Peilert, A. Bohnet, A. Rosenhauser, H. St�ocker. and W. Greiner, Phys.

Rev. C37, 2451(1988).

[24] G. Peilert, J. Konopka, H. St�ocker, W. Greiner, M. Blann and M.G. Mustafa, Phys.

Rev. C46, 1457(1992).

[25] T. Maruyama, A. Ohnishi and H. Horiuchi, Phys. Rev. C45, 2355(1992).

[26] K. Niita, S. Chiba, T. Maruyama, T. Maruyama, H. Takada, T. Fukahori, Y. Nakahara,

and A. Iwamoto, Phys. Rev. C52, 2620(1995).

[27] M.B. Chadwick, S. Chiba, K. Niita, T. Maruyama and A. Iwamoto, Phys. Rev. C52,

2800(1995),

[28] S. Chiba, M.B. Chadwick, K. Niita, T. Maruyama, T. Maruyama and A. Iwamoto,

Phys. Rev. C53, 1824(1996).

9



[29] S. Chiba, O. Iwamoto, T. Fukahori, K. Niita, T. Maruyama, T. Maruyama and A.

Iwamoto, Phys. Rev. C54, 285(1996).

[30] S. Chiba, K. Niita and O. Iwamoto, Phys. Rev. C., Dec. 1996 (in press).

[31] T. Maruyama, K. Niita, T. Maruyama, S. Chiba, Y. Nakahara, and A. Iwamoto, Prog.

Theor. Phys. 96, 263(1996).

[32] T. Maruyama et al., to be submitted.

[33] H. Sorge, H. St�ocker, and W. Greiner, Ann. of Phys. 192 (1989) 266

[34] T. Maruyama, S. W. Huang, N. Ohtsuka, G. Q. Li, A. F�assler, and J. Aichelin, Nucl.

Phys. A 534 (1991) 720

[35] T.H.R. Skyrme, Nucl. Phys. 9, 615(1959).

[36] J. Cougnon, private communication.

[37] W. Bauho�, Atomic Data and Nuclear Data Tables, 35, 429(1986).

[38] A. Auce, R.F. Carlson, A.J. Cox, A. Ingemarsson, R. Johansson, P.U. Renberg, O.

Sundberg and G. Tibell, Phys. Rev. C 53, 2919(1996).

[39] M. Nolte, H. Machner and J. Bojowald, Phys. Rev. C 36, 1312(1987).

[40] A. Ohnishi, Microscopic Simulation of Nuclear Reaction as a Tool to Evaluate Nuclear

Data, NRDF Annual Report 93, Hokkaido University (1994) (in Japanese).

[41] I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa, K. Sugimoto, O.

Yamakawa, T. Kobayashi and N. Takahashi, Phys. Rev. Lett. 55, 2676(1985).

[42] I. Tanihata, T. Kobayashi, O. Yamakawa, S. Shimoura, K. Ekuni, K. Sugimoto, N.

Takahashi, T. Shimoda and H. Sato, Phys. Lett. B206, 592(1988).

[43] H. Bethe, Phys. Rev. 57, 1125(1940).

[44] M.S. Hussein, R.A. Rego and C.A. Bertulani, Phys. Rep. 201, 279(1991).

[45] R. W. Finlay, Precision Total Cross Sections and the Optical Model at Intermediate

Energy, Proc. Int. Symp. on Fast Neutron Physics, 9-13 Sept. 1991, Beijing, China,

World Scienti�c, p.299(1992).

10


