(n,xn γ) reaction cross section measurements for (n,xn) reaction studies

M. Kerveno

A. Bacquias, C. Borcea, Ph. Dessagne, J.C. Drohé, N. Nankov, M. Nyman
Gen IV reactor systems

New concepts of reactors
- fast reactors
- accelerator driven systems

New fuel cycle
- 238U / 239Pu
- 232Th / 233U

Important needs of new nuclear data over a wide range of nuclei, energy and reactions.

One of the challenges is measurement’s accuracy.

NEA Nuclear Data
High Priority Request List

In reactor, $(n,\text{x}n)$ reactions $(x \geq 1)$ contribute to:
- Energy loss mechanism
- Neutron multiplication
- Production of radioactive isotopes

Bibliography in data bases shows that improvement of the knowledge of $(n,\text{x}n)$ process is necessary.
Introduction: importance of (n,xn) cross section knowledge

Example of \(^{238}\text{U}(n,n')\)

State of the art:
- **40 measurements** in EXFOR from 1956 to 2009
- **8 total cross section** measurements

=> **large discrepancies**

between experimental data and between evaluated cross sections

=> \(^{238}\text{U}(n,n')\) XS uncertainty = 20 %

Precise requirement from NEA and CEA/Cadarache

Salvatores et al. ; A.Santamarina et al.

Current uncertainties on \(^{238}\text{U}(n,n')\) impact the accuracy of the \(k_{\text{eff}}\) of the power and of the \(\beta_{\text{eff}}\) calculations of large core reactors (PWR, FR).

Target accuracy on \(^{238}\text{U}(n,n')\):

- \(\rightarrow\) PWR: \(\pm 10\%\)
- \(\rightarrow\) SFR: \(\pm 5\%\)
Introduction: experimental method

How to study \((n,xn)\) reactions?

- Direct measurement of secondary neutrons
- Activation technique
- \textit{prompt} \(\gamma\)-ray spectroscopy

\((n,xn\,\gamma)\) cross sections:
- can also \textbf{impact the} \(k_{\text{eff}}\) calculation,
- can be measured using \textit{“white”} neutron beam with the TOF technique,
- provide \textbf{exclusive measurements very restrictive} for testing models.

Example of \(^{238}\text{U}(n,n'\,\gamma)\)
D. Bernard et al.
For small reactor core:
\(k_{\text{eff}}\) \(\rightarrow 50\%\) of its sensitivity from first inelastic threshold
For large reactor core:
radial power \(\rightarrow\) \textbf{sensitivity to the first inelastic levels}

From \((n,xn\,\gamma)\) cross section measurements \textbf{to total} \((n,xn)\) cross section:
Need of structure parameters and theoretical model...
Introduction: IPHC / IRMM / IFIN-HH experimental project

\[(n, xn \gamma)\] reaction cross sections measurements

IPHC (France) / IRMM (Belgium) / IFIN-HH (Romania) collaboration

⇒ development of an experimental set-up GRAPhEME
dedicated to the precise measurement
of the \[(n, xn \gamma)\] reaction cross sections on actinides
@ GELINA facility (IRMM-Belgium)

2005 – 2010: \(^{235}\text{U}\) campaign
2009 – 2010: \(^{232}\text{Th}\) campaign
2009 – 2012: nat,182,183,184,186\(^{W}\) campaign
2011 – 2012: \(^{238}\text{U}\) campaign

Collaboration with theoreticians and evaluators to improve the quality
and the description of our measured cross sections
Experimental set-up @ GELINA: GRAPHEME

GELINA, IRMM, Geel, Belgium

- White neutrons beam
- few eV ➔ 20 MeV

- $f = 800 \text{ Hz}$
- 30m
- e^-
- Uranium Target

Prompt γ spectroscopy

- Pulsed Neutron Beam
- Fission Chamber
- HPGe planar detectors
- Sample

Experimental set-up @ GELINA:

- **GRAPHEME**
Experimental set-up @ GELINA : GRAPHEME

FP16 - 30 m

- GRAPhEME
- 4 HPGe planar detectors
- Noise insulation (electromagnetic field from the accelerator)
- and γ background reduction
- Shielding: Pb-Cd-Cu castle

Fission Chamber (²³⁵U)

TNT2 Card @IPHC
Data Analysis

TOF and γ spectra

Radioactivity

$^{232}\text{Th}(n,n'\gamma)^{232}\text{Th}$

$^{232}\text{Th}(n,2n\gamma)^{231}\text{Th}$

$^{232}\text{Th}(n,3n\gamma)^{230}\text{Th}$
Data Analysis

TOF spectrum

$^{235}\text{U case}$

γ flash

$E_n = 20\text{ MeV}$

$E_n = 6\text{ MeV}$

$E_n = 1\text{ MeV}$

$E_n = 0.1\text{ MeV}$

radioactivity

Time of Flight (μs)
Data Analysis

TOF and γ spectra

235U case

(n,n') energy gate spectrum

(n,2n) energy gate spectrum

Radioactivity spectrum

Counts

Time of Flight (μs)

Energy (keV)

Radioactivity spectrum

Counts

Time of Flight (μs)

Energy (keV)
Data Analysis

Cross section calculation

\[\frac{d\sigma}{d\Omega}^{(n,x\gamma)}(\theta) = \frac{n_{\text{det}}}{N_{at} \cdot \phi_n \cdot \varepsilon \cdot t} \]

\(n_{\text{det}} \): number of detected \(\gamma \)
\(N_{at} \): number of atoms in the sample
\(\phi_n \): neutron flux
\(\varepsilon \): HPGe efficiency
\(t \): measurement time

Differential cross section can be expressed by a finite \textbf{sum of Legendre polynomials}:

\[\frac{d\sigma}{d\Omega}^{(n,x\gamma)}(\theta) = \frac{\sigma_{\text{tot}}}{4\pi} \sum_{i=0}^{\infty} a_i P_i(\cos \theta) \]

Measurement at the \textbf{polynomial nodes} \textbf{Gauss quadrature}:

\[\sigma_{\text{tot}}^{(n,x\gamma)} = 4\pi \left[w_1^* \frac{d\sigma}{d\Omega}(\theta_1^*) + w_2^* \frac{d\sigma}{d\Omega}(\theta_2^*) \right] \]

\(w_1 = 0.3479 \) for \(\theta_1 = 30.56^\circ \) or \(149.44^\circ \) and
\(w_2 = 0.6571 \) for \(\theta_2 = 70.12^\circ \) or \(109.88^\circ \)
Data Analysis

What about uncertainties?

\[\frac{\Delta \sigma}{\sigma} : 5\% \text{ to } 7\% \text{ for } E_n = 0.5 - 9 \text{ MeV} \]

But can reach up to 20\% for \(E_n > 9 \text{ MeV} \)

(where the neutron flux is low)

Cross section of a given \(\gamma \) ray transition \([b]\)

\[
\frac{d\sigma^{(n,xn\gamma)}}{d\Omega}(\theta) = \frac{n_{\text{det}}}{N_{at} \cdot \phi_n \cdot \varepsilon_{\gamma} \cdot t}
\]

Detected hits in a given ray:
- peak identification (possible contamination)
- Good statistics
- Low background

Number of atoms in target
- Sample composition
- Precise measurements (size, weight)

Acquisition time [s]
- Long time measurements (stability)

\(\gamma \) detection efficiency
- Measurements
- Simulations (attenuation, oxidation)

Incident neutron flux \([s^{-1} \cdot cm^{-2}]\)

Fission chamber characteristics

But can reach up to 20\% for \(E_n > 9 \text{ MeV} \)

\(\Delta \sigma/\sigma \): 5\% to 7\% for \(E_n = 0.5 - 9 \text{ MeV} \)

Data Analysis

\(\Delta \sigma/\sigma \): 5\% to 7\% for \(E_n = 0.5 - 9 \text{ MeV} \)

But can reach up to 20\% for \(E_n > 9 \text{ MeV} \)

(where the neutron flux is low)
Results

\[^{235}\text{U}(n,xn\gamma) \]

Beam time: 1466 hours
Sample: enrichment \(^{235}\text{U} 93.2\%\)
mass 37.43 g
diameter 12.00 cm
thickness 0.21 mm

Bibliography:
Very few measurements in EXFOR:
4 \(\sigma(n,n')\) measurement (1961-1969)
1 \(\sigma(n,n'\gamma)\) meas. (2000 Younes et al.)

2 \(\sigma(n,2n)\) measurement (1972-1980)
1 \(\sigma(n,2n\gamma)\) meas. (2000 Younes et al.)

+ \(\sigma(n,xn\gamma)\) in A.L. Hutcheson Thesis (2008)

\(-\rightarrow\) Compare to TALYS calculations (P. Romain, CEA/DAM, FRANCE)
Results

\[^{235}\text{U}(n,xn\gamma) * \]

\begin{itemize}
 \item \textbf{exp data} \% Our \textbf{exp data} \\
 \item * discrepancies with Hutcheson data. \\
 \item * agreement with Younes data for the 244 keV \(\gamma \) transition but discrepancies at high neutron energies for the 2 other (n,2n\(\gamma \)) transitions.
\end{itemize}

\begin{itemize}
 \item \textbf{TALYS} \% \textbf{Exp data} \\
 \item * pheno-cgmr is the best parameterization.
 \item * \((n,n'\gamma)\): shape and amplitude are not well reproduced.
 \item * \((n,2n\gamma)\): quite good agreement in the shape but factor 1.5 to 1.9 in amplitude.
\end{itemize}

*J.C Thiry et al. paper submitted soon
Results

\[^{238}\text{U}(n,\alpha \gamma) : \text{preliminary} \]

Beam time: 1200 hours

Sample: purity natU 99.9 %
- mass 10.62 g
- diameter 7.02 cm
- thickness 0.18 mm

About 30 \((n,\alpha \gamma)\) transitions “spotted”
- 20 preliminary \(\gamma\) transitions in \(^{238}\text{U}\)
- including 5 going to the ground state.
- \(\rightarrow\) Compare to TALYS calculations
 (P.Romain, CEA/DAM, FRANCE)

Bibliography:
- lot of total cross section measurements in EXFOR but:
 - \(4 \sigma(n,n' \gamma)\) meas. (1976 Voss et al., 1979 Olsen et al., 2004 Fotiades et al., 2009 Hutcheson et al.)
 - \(2 \sigma(n,2n \gamma)\) meas. (2009 Hutcheson et al., 2004 Fotiades et al.)

NEA Nuclear Data High Priority Request List

\(^{238}\text{U} \text{level scheme}
Results

$^{238}\text{U}(n,n',\gamma)$: preliminary

N.B. we are able to measure the de-excitation of the first level in ^{238}U

- **exp data**
 - Our exp data
 - Fotiades data slightly higher than our data but good agreement in shape.

- **TALYS**
 - Exp data
 - Shape is well reproduced except in some case when a direct component appears: the relative proportion of the two components are not well calculated.
 - In amplitude, discrepancies depend on the γ-transition.
Results

$^{232}\text{Th}(n,xn\gamma)$: very preliminary

Beam time: 375 hours
Sample: enrichment ^{232}Th 99.5%
mass 11.99 g
surface 36.46 cm2
thickness 0.30 mm

12 γ transitions in ^{232}Th
1 γ transition in ^{231}Th
-> Compare to TALYS calculations
(A. Koning, NRG, The Netherland)

Bibliography:
Several measurements in EXFOR:
3 $\sigma(n,n')$ measurement (1962-1983)
12 $\sigma(n,n')$ level production measurement (1962-2001)
1 $\sigma(n,n'\gamma)$ meas. (1985 Dave et al.)
21 $\sigma(n,2n)$ measurement (1956-2011)
0 $\sigma(n,2n\gamma)$ meas.
Results

\(^{232}\text{Th}(n, n' \gamma)\): very preliminary

N.B. we are able to measure the de-excitation of the first level in \(^{232}\text{Th}\).

exp data % Our exp data
* agreement is very good up to \(E_n = 2\) MeV (high limit of the J.H. Dave exp data).

TALYS % Exp data
* amplitude is well reproduced for states in ground state band but overestimation above \(E_n = 7\) MeV.
* for other \(\gamma\)-transitions the agreement is less good.
Results

\[^{186,184,183,182}\text{W}(n,xn \gamma) : very preliminary \]

Beam time: 300 hours \(^{186,184,183}\text{W} \)
500 hours \(^{182}\text{W} \)

Sample: enrichment \(^{186,184,182}\text{W} \sim 94.5 \% \)
\(^{183}\text{W} \sim 83.75 \% \)

mass \sim 45 to 49 g
diameter \sim 6.6 to 7.1 cm
thickness \sim 0.13 to 1.30 mm

Bibliography:
Few measurements in EXFOR:

\(^{182}\text{W} : 2 \sigma(n,n') \) measurement (1967 – 1999)
7 \(\sigma(n,2n)\) measurement (1959 – 1997)

\(^{183}\text{W} : 2 \sigma(n,n') \) measurement (1982 – 1996)
1 \(\sigma(n,2n)\) measurement (1980)

\(^{184}\text{W} : 3 \sigma(n,n') \) measurement (1967 – 2003)
4 \(\sigma(n,2n)\) measurement (1966 – 1982)

\(^{186}\text{W} : 3 \sigma(n,n') \) measurement (1967 – 1996)
14 \(\sigma(n,2n)\) measurement (1959 – 1999)

\(^{182}\text{W} \) sample
27 \(\gamma\) transitions in \(^{182}\text{W} \)
4 \(\gamma\) transitions in \(^{181}\text{W} \)

\(^{183}\text{W} \) sample
17 \(\gamma\) transitions in \(^{183}\text{W} \)
5 \(\gamma\) transitions in \(^{182}\text{W} \)

\(^{184}\text{W} \) sample
15 \(\gamma\) transitions in \(^{184}\text{W} \)
4 \(\gamma\) transitions in \(^{183}\text{W} \)

\(^{186}\text{W} \) sample
15 \(\gamma\) transitions in \(^{186}\text{W} \)
3 \(\gamma\) transitions in \(^{185}\text{W} \)

-> Compare to TALYS calculations
(P.Romain, CEA/DAM, FRANCE)
Results

186,184,183,182W(n,xn γ) : very preliminary

184W(n,n$'$ γ)

Preliminary conclusions

TALYS % Exp data
* in most cases the shape is well reproduced but the discrepancies for the amplitude are different for each γ transition.
* branching ratio data bases play an important role.
From \((n,xn\gamma)\) to \((n,xn)\) cross sections?

Total inelastic scattering cross section is the sum of the cross section carried by all transitions that directly decay to the ground-state.

In general case:

\[
\sigma_n(E) = \sum_{i=1}^{E_s(L_i) \leq E} \sigma_{n',\gamma}(E, L_i \rightarrow L_{ki}) \frac{p(L_i \rightarrow g.s.)}{p_\gamma(L_i \rightarrow L_{ki})}
\]

- Requires a good knowledge of spectroscopic parameters
- Practically, the deduced inelastic cross section is a lower limit for the total inelastic cross section -> model prediction
From \((n,x_n \gamma)\) to \((n,x_n)\) cross sections?

\(^{235}\text{U}(n,2n)\) case

We have measured only \(~20\%\) of the total cross section ...

Strong model dependence
From \((n,xn\gamma)\) to \((n,xn)\) cross sections? Discussion

What did we learn?

Experimental point of view:
- **control** and **minimize all source of error**
- **matrix covariance calculation**
- measurement of a **maximum of \(\gamma\)-transitions**
- efforts have to be done to measure the \(\gamma\)-transitions to the ground state

Theoreticians and evaluators point of view:
- for fissionable nuclei, \(\sigma(n,f)\) must be **well described**
- nucleus **structure, branching ratios and internal conversion coefficients** play an **important role**
- another approach than the **exciton** model (TALYS-1.2) has to be **tested** to model the **pre-equilibrium reactions**
Conclusion

Covariance matrix

\[\sigma(n,xn,\gamma) \]

\[^{235}\text{U}, ^{238}\text{U}, ^{232}\text{Th}, 186,184,183,182\text{W} \]

Precise \[\sigma(n,xn,\gamma) \]

Highly radioactive targets

\[^{233}\text{U} \text{ (}^{232}\text{Th cycle)} \]

Segmented HPGe

Branching ratio

Conversion electron measurements

Collaboration with evaluators:
- Quality of experimental data

Theoreticians:
- Quality of model predictions
The authors thank the team of the GELINA facility for the preparation of the neutron beam and for their strong support day after day....