Neutron capture and fission reactions on 235U: cross sections, α-ratios and prompt fission γ-rays

C. Guerrero and E. Berthoumieux
CERN (Geneva, Switzerland)

D. Cano-Ott, E. Gonzalez and E. Mendoza
CIEMAT (Madrid, Spain)

M. Sabate
Universidad de Sevilla (Seville, Spain)

(The n_TOF Collaboration, www.cern.ch/nTOF)
Motivation: capture cross sections and α-ratios

The criticality of current and fast future reactors must be known within 0.3-0.5% for operation/safety.

(FCA) Fast Critical Assembly (JAEA)

GOAL: Measure $^{235}\text{U} \sigma(n,\gamma)$ below 2.5 keV

Differences up to 2% in the measured and calculated criticality values for FCA (JAERI, Japan) assemblies with different hardness are due to $^{235}\text{U} \sigma(n,\gamma)$ below 2.5 keV.
Motivation: prompt fission γ-rays

IMPACT
The four fast reactor systems of GenIV feature innovative core characteristics for which gamma-ray heating estimates for non-fuel zones require an uncertainty of 7.5%. A similar requirement appears for the experimental Jules Horowitz Reactor (RJH) at Cadarache. Recent studies show evidence of discrepancies on integral measurement in MASURCA, EOLE and MINERVE, from which it is clear that the expectations for GenIV systems and the RJH thermal reactor are not met. Gamma-ray energy release is dominated by 239Pu and 235U.

ACCURACY
- **Observed**: Discrepancies for C/E ratios in various benchmarks range from 10 to 28%.
- **Target**: 7.5% on the total gamma energy and multiplicity
- **Target**: Best accuracy achievable for the gamma spectrum shape

COMMENT FROM REQUESTER
Forty percent of the total gamma-ray energy release results from prompt decay of fission products. No comprehensive analytic expressions exist and Hauser-Feshbach model calculations are involved and presently lack sufficient knowledge to warrant a solution of the problem. New measurements would be needed to guide new evaluation efforts. Present evaluations are based on measurements from the seventies.
Measuring technique

Thermal-epithermal neutrons induce both \((n,\gamma)\) and \((n,f)\) reactions, both emitting \(\gamma\)-rays

MEASURING THE NEUTRON CROSS SECTIONS & \(\gamma\)-RAY EMISSION REQUIRES

- A **facility** providing a neutron beam (The n_TOF facility).
- A highly pure **sample**.
- A detection system for **detecting simultaneously fission fragments and \(\gamma\)-rays**
- The **analysis tools** to determine the measured cross sections with the required accuracy.
A Google view of n_TOF

TECHNICAL PAPERS ON n_TOF’s:

NEUTRON FLUENCE, PROFILE AND RESOLUTION:
- NIM-A 513 (2003) 524-537

DATA ACQUISITION SYSTEM (FULLY BASED IN FLASH-ADC)
- NIM-A 538 (2005) 692-702

DETECTION SYSTEMS
- NIM-A 608 (2009) 424-433

More information at www.cern.ch/nTOF
Experimental set-up: The TAC and MGAS detectors

We need to detect capture and fission reactions simultaneously!

Total Absorption Calorimeter (TAC) for (n,γ)
- 40 BaF$_2$ crystals
- 4π geometry (95% coverage)
- 16% energy resolution at 662 keV
- Used for $\sigma(n,\gamma)$ of actinides since 2004

MicroMegas (MGAS) for (n,f)
- Based on Bulk technology
- Double stage gas detector: conversion +amplification
- ~90% efficiency for FF. FF.
- Used for neutron monitoring since 2009

Results: distributions E_{sum}, m_{cr} & E_n

C. Guerrero et al., NIM-A 608 (2009) 424-433

Results: distributions Amp. & E_n

S. Andriamonje et al., NIM-A 481 (2002) 120–129

C. Guerrero et al. @ WONDER-2012 Aix-en-Provence (France)
Experimental set-up (2012): Combination of the TAC and MGAS

- 10 235U samples of 300 μg/cm2 (42 mm diameter)
- MGAS filled with Ar/CF$_4$/isobutane at 1 atm
- TAC and MGAS signals digitized at 250 MS/s and 100 MS/s, respectively.

10 MGAS detectors (5 back-to-back assemblies) each equipped with a 4.15 mg 235U sample (supplied by JRC-IRMM)
Experimental set-up (2012): Combination of the TAC and MGAS

- MGAS signals
- Neutrons
- BaF$_2$ module
- Neutron absorber
- MGAS with 235U samples
Validation of simultaneous measurement of capture and fission reactions at n_TOF

Letter Of Intent to the ISOLDE and Neutron Time-of-Flight Committee

Spokespersons: C. Guerrero1 and E. Berthoumieux2
Technical coordinator: V. Vlachoudis3

C. Guerrero1, E. Berthoumieux2, S. Andriamonje2, D. Cano-Ott2, E. Gonzalez-Romero2, F. Gusing2, T. Martinez2, E. Mendoza1, M. Calviani3 and The n_TOF Collaboration (\url{http://cern.ch/n_TOF/})

1Centro de Investigaciones Energéticas Medioambientales y Tecnológicas – Ciemat, Madrid, Spain
2CEA Saclay, IRFU, F-91191 Gif-sur-Yvette, France
3CERN, Geneva, Switzerland
Measurement (2010): E_{sum} and m_{crystal} distributions

Deposited energy ($m_{\text{cr}}>2$) and multiplicity ($E_{\text{sum}}>3$) distributions corresponding to resonances:

\[S_n^{(236U)} \sim 6.5 \text{ MeV} \]
Measurement (2010): Detection efficiencies

With two different detectors and two different types of reactions to detect, it is important to define clearly the different efficiencies that play a role in the measurement and their interrelations.

\[\varepsilon_{\text{MGAS}}(n,f), \varepsilon_{\text{TAC}}(n,f) \text{ and } \varepsilon_{\text{TAC}}(n,\gamma) \]

When a fission reaction occurs, it can be detected:

a) in both detectors, \(\rightarrow \varepsilon_{\text{MGAS}}(n,f) \cdot \varepsilon_{\text{TAC}}(n,f) \)

b) in none of them, \(\rightarrow (1 - \varepsilon_{\text{MGAS}}(n,f)) \cdot (1 - \varepsilon_{\text{TAC}}(n,f)) \)

c) only in the MGASs \(\rightarrow \varepsilon_{\text{MGAS}}(n,f) \cdot (1 - \varepsilon_{\text{TAC}}(n,f)) \)

d) only in the TAC. \(\rightarrow (1 - \varepsilon_{\text{MGAS}}(n,f)) \cdot \varepsilon_{\text{TAC}}(n,f) \)

When a neutron capture occurs, it can only be detected in the TAC \(\rightarrow \varepsilon_{\text{TAC}}(n,\gamma) \)

The efficiency for detecting fission reactions in each detector is independent from the other, but the calculation from experimental data requires that these four probabilities are properly taken into account.
Measurement (2010): $\varepsilon_{\text{MGAS}}(n,f)$, $\varepsilon_{\text{TAC}}(n,f)$ and $\varepsilon_{\text{TAC}}(n,\gamma)$

Calculation of $\varepsilon_{\text{MGAS}}(n,f)$

MC simulations
Samples are 318 μg/cm2, nearly identical to those of the 235U samples (316 mg/cm2) used in FIC, for which simulations with FLIKA give $\varepsilon_{\text{MC}}(n,f)\approx0.94$ (6% losses due to absorption in the sample).

Experimentally:
Fission events produce high-energy, high-multiplicity TAC events. Assumption \rightarrow $\varepsilon_{\text{TAC}} \approx 100\%$ for such events. Then, the detection efficiency of the MGASs can be calculated as the ratio of tagged to all events for multiplicities higher than \sim10 (no capture events).

![Graph showing the efficiency of detection](image)

$\varepsilon_{\text{MC}}(n,f)\approx0.94 \& \varepsilon_{\text{exp}}(n,f)\approx0.90$

$\varepsilon_{\text{MGAS}}(n,f)\approx0.92$
A coincident event in the TAC is found for 97% of the MGAS events (MGASamp>20 channels). This value represents the TAC efficiency for fission events, $\varepsilon_{\text{TAC}}(n,f)$, and is very similar to the efficiency of $\varepsilon_{\text{TAC}}(n,\gamma)=0.974(4)$ for capture events in 197Au (from GEANT4 Monte Carlo simulations).

The efficiency $\varepsilon_{\text{TAC}}(n,f)$ depends on the analysis conditions for the deposited energy and multiplicity values.

<table>
<thead>
<tr>
<th>$0.1<E_{\text{sum}}$</th>
<th>$m_1>0$</th>
<th>$m_1>1$</th>
<th>$m_1>2$</th>
<th>$m_1>3$</th>
<th>$0<m_{cr}<9$</th>
<th>$1<m_{cr}<9$</th>
<th>$2<m_{cr}<9$</th>
<th>$3<m_{cr}<9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.9</td>
<td>94.3</td>
<td>90.1</td>
<td>83.5</td>
<td>71.0</td>
<td>68.3</td>
<td>64.1</td>
<td>57.5</td>
<td></td>
</tr>
<tr>
<td>93.3</td>
<td>92.7</td>
<td>89.7</td>
<td>83.4</td>
<td>67.3</td>
<td>66.7</td>
<td>63.7</td>
<td>57.4</td>
<td></td>
</tr>
<tr>
<td>87.9</td>
<td>87.7</td>
<td>86.0</td>
<td>81.8</td>
<td>62.0</td>
<td>61.8</td>
<td>60.2</td>
<td>55.8</td>
<td></td>
</tr>
<tr>
<td>79.9</td>
<td>79.8</td>
<td>79.0</td>
<td>76.5</td>
<td>53.9</td>
<td>53.8</td>
<td>53.1</td>
<td>50.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$0.1<E_{\text{sum}}<7$</th>
<th>$m_1>0$</th>
<th>$m_1>1$</th>
<th>$m_1>2$</th>
<th>$m_1>3$</th>
<th>$0<m_{cr}<9$</th>
<th>$1<m_{cr}<9$</th>
<th>$2<m_{cr}<9$</th>
<th>$3<m_{cr}<9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>64.8</td>
<td>62.2</td>
<td>57.9</td>
<td>51.5</td>
<td>58.3</td>
<td>55.7</td>
<td>51.5</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td>61.1</td>
<td>60.6</td>
<td>57.6</td>
<td>51.5</td>
<td>54.7</td>
<td>54.1</td>
<td>51.1</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td>55.8</td>
<td>55.6</td>
<td>54.0</td>
<td>49.8</td>
<td>49.3</td>
<td>49.1</td>
<td>47.6</td>
<td>43.3</td>
<td></td>
</tr>
<tr>
<td>47.7</td>
<td>47.6</td>
<td>46.9</td>
<td>44.5</td>
<td>41.2</td>
<td>41.2</td>
<td>40.4</td>
<td>38.0</td>
<td></td>
</tr>
</tbody>
</table>
Measurement (2010): $\varepsilon_{MGAS}(n,f)$, $\varepsilon_{TAC}(n,f)$ and $\varepsilon_{TAC}(n,\gamma)$

Calculation of $\varepsilon_{TAC}(n,\gamma)$

The detection efficiency $\varepsilon_{TAC}(n,\gamma)$ can be calculated accurately by means of Monte Carlo simulations when both the experimental set-up and the details of the capture cascades are properly considered.

- Already done for ^{237}Np, ^{240}Pu, $^{241,243}\text{Am}$, and ^{233}U.
- $^{235}\text{U}(n,\gamma)$ still to be done

Approximation:

^{235}U is very similar to ^{237}Np
- Odd nuclei
- Similar level spacing (~ 0.5 eV)
- Similar Binding Energies ($S_n \sim 6$ MeV)
- Cut at 2.5 MeV ($0.46*S_n$) is to ^{237}Np like 3 MeV is to ^{235}U

$$\varepsilon_{TAC}(n,\gamma)=0.70(3)$$

[$E_{\text{sum}}>3$ MeV and $m_{ct}>2$]
Test of TAC+MGAS with $^{235}\text{U}@ n_\text{TOF}$

- Discrimination (n,γ) vs. (n,f)
- Normalization to $\sigma(n,f)$
- Efficiency correction
- Background subtraction
- Identification of impurities

Agreement with evaluations at low E_n

Measurement (2010): Results and publication
Data taking ongoing at CERN !!!

Compared to 2010 test measurement:
10 samples of 4.15 mg each, instead of 3 samples of 1 mg each → **x10 in mass**
Samples 42 mm in diameter instead of 20 mm → **full beam coverage**
Configuration with neutrons absorber → **x0.2 in neutron scattering background**
More beam time, 9 weeks instead of 1 → **x9 statistics**
Very Preliminary

σ(n,γ)/(n,f) measurement (2012): deposited energy distributions

TAC (Mult>2) (Resonances below 20 eV)

Counts (norm. to 235U protons)

- All
- Fission
- Backg. ($\times 0.95$ & shifted -40 keV)
- All-Fission
- All-Fission-Backg.

Deposited Energy (keV)
$\sigma(n, \gamma)/(n,f)$ measurement (2012): neutron energy distributions
σ(n, γ)/(n,f) measurement (2012): neutron energy distributions

C. Guerrero et al. @ WONDER-2012 Aix-en-Provence (France)
σ(n, γ)/(n,f) measurement (2012): neutron energy distributions

Very Preliminary

C. Guerrero et al. @ WONDER-2012 Aix-en-Provence (France)
σ(n, γ)/(n,f) measurement (2012): neutron energy distributions

Very Preliminary

C. Guerrero et al. @ WONDER-2012 Aix-en-Provence (France)
$\sigma(n, \gamma)/(n,f)$ measurement (2012): neutron energy distributions
Prompt γ-rays from fission in 235U

The 4π BaF$_2$ Total Absorption Calorimeter (TAC) provides information on the multiplicity and energy of the prompt γ-ray emission following fission reactions.
Prompt γ-rays from fission in 235U

The 4π BaF$_2$ Total Absorption Calorimeter (TAC) provides information on the multiplicity and energy of the prompt γ-ray emission following fission reactions.

PLAN

Direct measurements of γ-ray emission

+ Benchmark models through:
 γ-rays models + simulation & comparison to TAC data

C. Guerrero et al., NIM-A 671 (2012) 108-117
Prompt γ-rays from fission in U & Pu

Independently of n_TOF, a new campaign will take place in 2013 for measuring prompt fission γ-rays from ^{233}U, ^{235}U, ^{239}Pu and ^{241}Pu through the combination of:

- PBF1 cold neutron beam from ILL
- EXOGAM high resolution HPGe detector array
Conclusions and perspectives

Measuring the capture cross sections and prompt γ-rays of fissile isotopes is of upmost importance for the development of present and future (ADS & Gen-IV) nuclear reactors.

FOLLOWING A SUCCESSFUL TEST, A NEW EXPERIMENT IS RUNNING FOR MEASURING:

- Capture cross section in the Resolved Resonance Region (RRR) [below 2.25 keV]
- Resonance parameters in the full RRR
- Alpha ratio in the full RRR
- Prompt fission γ-rays @thermal and as function of E_n

Preliminary results from this very fresh data (now being collected) will be presented @ ND-2013 (New York, March 4-8 2013)

D. Cano-Ott et al., Measurement of the neutron capture cross section of the fissile isotope 235U with the CERN n_TOF Total Absorption Calorimeter and a fission tagging based on MicroMegas detectors