Recent Developments in the CONRAD Code regarding Experimental Corrections

P. Archier¹ G. Noguère¹ O. Litaize¹ C. De Saint Jean¹
P. Schillebeeckx² S. Kopecky² K. Volev²

¹CEA, DEN, DER, SPRC, LEPh, Cadarache, F-13108 Saint-Paul-lez-Durance, France
²JRC-IRMM, Retieseweg, 2440 Geel, Belgium

WONDER-2012, 26/09/2012
Table of contents

1. Energy/ToF experiments
 - Needs for Time-of-Flight measurements in CONRAD
 - Test case with Cd113 transmission

2. Resolution Functions
 - Resolution Functions?
 - Analytical Resolution Function
 - Numerical Resolution Function
 - Comparisons between CONRAD and REFIT

3. Sample homogeneities
 - Inhomogeneities
 - Experimental modeling of transmission
 - Test case with Pu242 transmission measurements

4. Conclusions
Table of contents

1 Energy/ToF experiments
 - Needs for Time-of-Flight measurements in CONRAD
 - Test case with Cd113 transmission

2 Resolution Functions
 - Resolution Functions?
 - Analytical Resolution Function
 - Numerical Resolution Function
 - Comparisons between CONRAD and REFIT

3 Sample homogeneities
 - Inhomogeneities
 - Experimental modeling of transmission
 - Test case with Pu242 transmission measurements

4 Conclusions
Needs for Time-of-Flight measurements in CONRAD

Before in CONRAD:

Measurements had to be given in energy, why?

- because theoretical models work with energy,
- because there are less experimental corrections when analysis are carried out in the URR and the continuum energy regions.
Needs for Time-of-Flight measurements in CONRAD

Before in CONRAD:
Measurements had to be given in energy, why?
- because theoretical models work with energy,
- because there are less experimental corrections when analysis are carried out in the URR and the continuum energy regions.

Now in CONRAD:
Measurements can be given both in energy and in ToF:
- because most experiments for the resonance range use the ToF technique,
- because it goes naturally when one has to use resolution functions, in time/distance (see next section).
Test case with 113Cd transmission

Transmission data (S. Kopecky)

- Analysis between 0.04 eV and 0.6 eV (first resonance of 113Cd)
- Areal density: 1.3643×10^{-4} at./b
- 113Cd abundance: 0.1222
- Doppler: FreeGas model, effective temperature: 298.5 K
- Flight Path: 26.464 m
- Time Offset: -684 ns
Test case with 113Cd transmission
Test case with 113Cd transmission
Test case with ^{113}Cd transmission

Wrong flight path...

The flight path can be fitted in CONRAD:

- test with a bad FP = 28 m (instead of 26.464 m)
- ask the code to “find” the correct flight path
Test case with 113Cd transmission
Table of contents

1. Energy/ToF experiments
 - Needs for Time-of-Flight measurements in CONRAD
 - Test case with Cd113 transmission

2. Resolution Functions
 - Resolution Functions?
 - Analytical Resolution Function
 - Numerical Resolution Function
 - Comparisons between CONRAD and REFIT

3. Sample homogeneities
 - Inhomogeneities
 - Experimental modeling of transmission
 - Test case with Pu242 transmission measurements

4. Conclusions
All experimental data are resolution broadened:

The true observables are

\[T_{\text{eff}} (E) = \int R(E', E) T(E) \, dE' \]

\[Y_{\text{eff}} (E) = \int R(E', E) Y(E) \, dE' \]

Deviations in Time-of-Flight

- Accelerator burst width \(t_b \)
- Time channel width \(t_c \)
- Target-moderator assembly \(L_{\text{mod}} \)
- Lithium glass detector \(L_{\text{det}} \) (for transmission)
- ...
Analytical Resolution Function: χ^2 with n degrees of freedom

Analytical distribution used for moderator

$$R(t) \propto \left(\frac{t}{\lambda} \right)^{\frac{n}{2}-1} \cdot \exp \left(-\frac{t}{\lambda} \right)$$

with λ, the mean free time (or mean free path) of neutrons in the moderator.

Implementation in CONRAD

- you can choose if you want a distribution in time (ns) or in distance (m)
- λ is currently constant with the incident neutron energy, whereas it can be energy-dependant in REFIT and SAMMY
Numerical Resolution Function (User Defined RF)

Distributions given by the user

Most of the time calculated with Monte-Carlo codes (MCNP, ...)
- They can describe a part (moderator, detector...) or the whole experimental setup
- Each distribution is given for a given incident neutron energy

Implementation in CONRAD

- you can have distributions in time (ns) or in distance (m)
- we use a log-lin interpolation for neutron energies between two distributions
Comparisons between CONRAD and REFIT

Capture cross-section

- 56Fe radiative capture
- Analysis between 1120 eV and 1180 eV
- Doppler: FreeGas model, effective temperature: 296.3 K
- Flight path: 28.419 m
Comparisons between CONRAD and REFIT

56Fe - JEFF-3.1.1 - Radiative Capture - FGM T=296.3K - no RF

- REFIT
- CONRAD
Comparisons between CONRAD and REFIT

^{56}Fe - JEFF-3.1.1 - Radiative Capture - FGM $T=296.3K$

χ^2 (lambda=5.83mm) - FP=28.419m
Comparisons between CONRAD and REFIT

$^{56}_{\text{Fe}}$ - JEFF-3.1.1 - Radiative Capture - FGM T=296.3K
Numerical RF - FP=28.419m
Comparisons between CONRAD and REFIT

$^{56}\text{Fe} - \text{JEFF-3.1.1} - \text{Radiative Capture} - \text{FGM T=296.3K} - \text{FP=28.419m}$

- no Res. Fct.
- Chi^2 (lambda=5.83mm)
- Num. RF (using RF from Chi^2)
Table of contents

1 Energy/ToF experiments
 • Needs for Time-of-Flight measurements in CONRAD
 • Test case with Cd113 transmission

2 Resolution Functions
 • Resolution Functions?
 • Analytical Resolution Function
 • Numerical Resolution Function
 • Comparisons between CONRAD and REFIT

3 Sample homogeneities
 • Inhomogeneities
 • Experimental modeling of transmission
 • Test case with Pu242 transmission measurements

4 Conclusions
Inhomogeneities

For thin powder sample, such as U/Pu oxydes

- Large porosity (holes)
- Thickness of the sample is not constant

From the paper of S. Kopecky in ND2007

- A log-normal distribution has been used to describe the thickness in the sample,
- This model can be used in REFIT to account for those inhomogeneities.

These experimental corrections have been implemented in CONRAD in the case of powder sample analysis.
Experimental modeling of transmission

Transmission without correction

\[T_{\text{eff}} (E) = \exp \left[-n \cdot \sigma_{\text{tot}} (E) \right] \] (4)

with \(n \) the areal density or thickness (at./barn).
Experimental modeling of transmission

Transmission without correction

\[T_{\text{eff}} (E) = \exp [-n \cdot \sigma_{\text{tot}} (E)] \]
(4)

with \(n \) the areal density or thickness (at./barn).

Transmission with porosity

\[T_{\text{eff}} (E) = (1 - p) \cdot \exp \left[-\frac{n}{(1 - p)} \cdot \sigma_{\text{tot}} (E) \right] + p \]
(5)

with \(p \), the porosity or holes in the sample (in %).
Experimental modeling of transmission

Transmission without correction

\[T_{\text{eff}} (E) = \exp \left[-n \cdot \sigma_{\text{tot}} (E) \right] \] \hspace{1cm} (4)

with \(n \) the areal density or thickness (at./barn).

Transmission with porosity

\[T_{\text{eff}} (E) = (1 - p) \cdot \exp \left[-\frac{n}{(1 - p)} \cdot \sigma_{\text{tot}} (E) \right] + p \] \hspace{1cm} (5)

with \(p \), the porosity or holes in the sample (in %).

Transmission with porosity and an areal density distribution

\[T_{\text{eff}} (E) = (1 - p) \cdot \int_{0}^{\infty} \text{pdf}(x) \exp \left[-\frac{n \cdot x}{(1 - p)} \cdot \sigma_{\text{tot}} (E) \right] dx + p \] \hspace{1cm} (6)

with \(\text{pdf}(x) \), a probability density function (log-Normal in this case)
Test case with 242Pu transmission measurements

Transmission data (S. Kopecky)

- Analysis between 1 eV and 3.5 eV
- Areal density: 2.51×10^{-5} at./b
- Doppler: FreeGas model, effective temperature: 295.45K
Test case with ^{242}Pu transmission measurements
Test case with 242Pu transmission measurements
Test case with ^{242}Pu transmission measurements
Test case with \(^{242}\text{Pu}\) transmission measurements
1 Energy/ToF experiments
 - Needs for Time-of-Flight measurements in CONRAD
 - Test case with Cd113 transmission

2 Resolution Functions
 - Resolution Functions?
 - Analytical Resolution Function
 - Numerical Resolution Function
 - Comparisons between CONRAD and REFIT

3 Sample homogeneities
 - Inhomogeneities
 - Experimental modeling of transmission
 - Test case with Pu242 transmission measurements

4 Conclusions
Conclusions

Realized in CONRAD for the moment:

- Implementation of both energy/Time-of-Flight measurements,
- Implementation of analytical (χ^2) and numerical resolution functions,
- Validation of the resolution functions versus REFIT and SAMMY codes,
- Implementation of sample inhomogeneities (porosity and log-normal distribution) for transmission experiments.
Conclusions

Further developments:

- Add new analytical resolution functions (gaussian, ...),
- Add energy-dependancy for λ parameter,
- Add Crystal Lattice Model (almost ready!) to test on 242Pu transmission data.
Conclusions

Acknowledgement

This work has been carried out in the framework of the ERINDA project and the CEA/IRMM collaboration.
A special thanks to the IRMM members for the fruitfull discussions and particulary to P. Schillebeeckx, S. Kopecky and K. Volev.
Thank you for your attention!