Nuclear Science Opportunities at LANSCE/Lujan Center

Mark Chadwick Los Alamos National Laboratory

Talk at the Workshop on Perspectives on Nuclear Data for the Next Decade, October 14, 2014, Bruyeres-le-Chatel, Paris, CEA

Abstract

A future research program planned for LANSCE/Lujan is described. This has been motivated by changes at Lujan following the DOE decision to end the materials science user program. We have an opportunity to design a new target, for improved measurements of nuclear cross sections in the 1-500 keV region. Possible future measurements are described.

***The Los Alamos Neutron Science Center →Ultra Cold Neutron Facility ↓Lujan Neutron Scattering** Center **Proton Radiography Facility √**Isotope **Production Facility Weapons Neutron Research Facility**

The issue:

- DOE/Office of Science pulled out of Lujan materials research
- Opportunity for LANL to rethink Lujan nuclear science, with a new target

Gaps in our understanding of intermediate energy nuclear reactions (~1 keV – 500 keV)

Redesign spallation moderation target to increase fluence in intermediate energy region

Optimization of a New Target at Lujan for Nuclear Science

- An opportunity now exists to optimize the present Lujan Center neutron spectrum to better cover the important intermediate neutron energy range between 100 eV to 2 MeV.
- Optimizations include:
 - Installation of a faster moderator which will enhance the neutron flux and energy resolution in this intermediate energy region
 - Changes to the pulse structure of the proton beam which includes producing a narrower proton pulse for better energy resolution and increasing the pulse repetition rate
 - Developing pulse stacking in the Proton Storage ring to increase the proton current. Initially, such a pulse-stacked pulse may be approximately 30 ns wide separated by 25 ms. If we store 4 pulses in the ring, the intensity will be approximately 95 uA with a pulse repetition rate of 160 Hz.

Objectives

Improved nuclear data for intermediate energy 1 keV – 500 keV neutrons, for:

- higher-fidelity neutronics simulations
- astrophysical applications
- fast reactor data needs

Historically we model intermediate energy criticality benchmarks more poorly than simple fast benchmarks

- They involve more scattering, a more complex transport, and are more sensitive to inelastic, elastic, reactions
- Neutron-incident reactions in the 1-500 keV region are often less well understood, e.g. actinide capture reactions, inelastic scattering
- Reaction rates (fission, n2n, ...) modeled more poorly here too

FIG. 24: MCNP Calculations with As-Built models for Pu metal FAST and INTER ZPR/ZPPR Assemblies.

ENDF performs less well in intermediate energy spectra than in fast spectra, for reaction rates Flattop critical assembly

Fission reaction rates, including threshold fissioners, measured by LANL radiochemists

Fast discrepancy $\sim 6\%$ Measure Reaction Spectral Index $\frac{236}{100}U(n,f) = 0.3155$ $\frac{237}{238}U(n,f) = 0.537$ $\frac{238}{238}U(n,f) = 0.1397$

(fast)

Intermediate discrepancy ~ 12%

Los Alamos
NATIONAL LABORATORY

Outer region

(intermediate)

TABLE XVI: Measured and Calculated Fission Rate Ratios for Selected Actinides in Flattop-25 by Barr et al. [15]. Data for the uranium isotopes and ²³⁹Pu are ratioed to ²³⁶U(n,f), the remaining results are ratioed to ²³⁹Pu(n,f). The measurement location for those data given in the top half of the Table are near the center of the assembly (r=1.11 cm), data given in the bottom half of the Table are from the tamper region (r=13.97 cm). As these data have not been published previously, we also include the measured spectral indices in the second column of this Table. A generic 5% uncertainty is judged appropriate for these data, but the values tabulated are given to the precision used in internal LANL documents.

Reaction	Measured Spectral Index	ENDF/B- VII.0 C/E	ENDF/B- VII.1 C/E
236U(n,f)	0.3155	0.921(46)	0.922(46)
237 U(n,f)	0.537	0.832(42)	0.892(45)
238U(n,f)	0.1397	1.029(51)	1.030(51)
239Pu(n,f)	1.307	1.039(52)	1.039(52)
238Pu(n,f)	1.002	0.967(48)	0.950(47)
240Pu(n,f)	0.549	1.043(52)	1.026(51)
241Pu(n,f)	1.073	0.911(46)	0.911(46)
242Pu(n,f)	0.482	0.961(48)	0.984(49)
241 Am(n,f)	0.577	0.918(46)	0.914(46)
236U(n,f)	0.08	0.669(33)	0.672(34)
237U(n,f)	0.391	1.018(51)	0.973(49)
238U(n,f)	0.02487	0.832(42)	0.832(42)
239Pu(n,f)	1.145	0.985(49)	0.985(49)
238Pu(n,f)	0.708	0.968(48)	0.946(47)
240Pu(n,f)	0.26	0.899(45)	0.870(43)
241Pu(n,f)	1.251	0.954(48)	0.953(48)
242Pu(n,f)	0.19	0.845(42)	0.871(44)
241 Am(n,f)	0.184	0.793(40)	0.784(39)

Survey of ICSBEP eigenvalue calculations (Kahler, LANL)

Energy of Average
Lethargy values below
1.0E-6 are largely
"THERM" systems; values
above 1.0E-1 are largely
"FAST" systems.

Fewer data exist the "INTERmediate" energy range.

²³⁵U capture: DANCE & RPI data solved the 0.5-2.5 MeV region questions (But questions above 2.5 keV still)

²³⁵U capture: we need more accurate data in the 2.5 keV - MeV region

Jandel's ratio method helped

Precision <3% was achieved using simultaneous rate determination;

- Rates of U5(ng) and U5(nf)
- The same target → same n
 flux for both reactions

Being implemented for ²³⁹Pu (S. Mosby et al.)

New Plutonium-239 Capture Cross Section Data. But More Accurate Data are Needed > 1 keV

- Results up to 1 keV are published
- Experiment with thick target completed, analysis in final stages

Fission Decay Chain Measurements Motivate Prompt Fission Gamma-Ray Data at LANSCE/Lujan

Traditional approaches

- 1/m plots (count rate v. control rod position, to identify asymptote & critical)
- Feynman variance of counts (doubles ...) to infer multiplication and k-eff

Decay of fission chain via fission-gamma-rays

Short-Lived Isomeric states after U235+n

E*

 During analysis of ²³⁵U(n,□) cross section we have found structure in the total gamma-ray energy E_{tot} spectra

M. Jandel et al., Phys Rev Lett 109, (2012)

Short-lived Actinide Isomers - NEUANCE

Isomeric states after U-235+n

- In high neutron fluence the secondary reactions can occur
- 236 U*: 1024 keV (4-) $T_{1/2} = 100 \text{ ns}$
- 236 U*: 678 keV (1-) $T_{1/2} = 3.7 \text{ ns}$
- Current work addresses resonance region
- → What is the population of these states after ²³⁵U+n?
- What are the n-reaction cross sections on these states?
- A.Future unresolved region En> 1keV

Conclusions

Future upgrades at Lujan are planned to address 1-500 keV advances:

- Precise capture & fission measurements
- Other reactions inelastic, elastic scattering, e.g. with RPI staff
- Prompt fission gamma-ray data, isomers

