Nuclear Science Opportunities at LANSCE/Lujan Center

Mark Chadwick
Los Alamos National Laboratory

Talk at the Workshop on Perspectives on Nuclear Data for the Next Decade, October 14, 2014, Bruyeres-le-Chatel, Paris, CEA

- EST.1943

Abstract

A future research program planned for LANSCE/Lujan is described. This has been motivated by changes at Lujan following the DOE decision to end the materials science user program. We have an opportunity to design a new target, for improved measurements of nuclear cross sections in the 1-500 keV region. Possible future measurements are described.

The Los Alamos Neutron Science Center

The issue:

DOE/Office of Science pulled out of Lujan materials research
Opportunity for LANL to rethink Lujan nuclear science, with a new target

Gaps in our understanding of intermediate energy nuclear reactions ($\sim 1 \mathrm{keV}-500 \mathrm{keV}$)

Redesign spallation moderation target to increase fluence in intermediate energy region

Operated by Los Alamos National Security, LLC for NNSA

Optimization of a New Target at Lujan for Nuclear Science

- An opportunity now exists to optimize the present Lujan Center neutron spectrum to better cover the important intermediate neutron energy range between 100 eV to 2 MeV .
- Optimizations include:
- Installation of a faster moderator which will enhance the neutron flux and energy resolution in this intermediate energy region
- Changes to the pulse structure of the proton beam which includes producing a narrower proton pulse for better energy resolution and increasing the pulse repetition rate
- Developing pulse stacking in the Proton Storage ring to increase the proton current. Initially, such a pulse-stacked pulse may be approximately 30 ns wide separated by 25 ms . If we store 4 pulses in the ring, the intensity will be approximately 95 uA with a pulse repetition rate of 160 Hz .

Objectives

Improved nuclear data for intermediate energy 1 keV - 500 keV neutrons, for:
higher-fidelity neutronics simulations
astrophysical applications
fast reactor data needs

NATIONAL LABARATORY

Historically we model intermediate energy criticality benchmarks more poorly than simple fast benchmarks

- They involve more scattering, a more complex transport, and are more sensitive to inelastic, elastic, reactions
(Neutron-incident reactions in the 1-500 keV region are often less well understood, e.g. actinide capture reactions, inelastic scattering
- Reaction rates (fission, n2n, ...) modeled more poorly here too

FIG. 24: MCNP Calculations with As-Built models for Pu metal FAST and INTER ZPR/ZPPR Assemblies.

ENDF performs less well in intermediate energy spectra than in fast spectra, for reaction rates Flattop critical assembly

s Fission reaction rates, including threshold fissioners, measured by LANL radiochemists

Center region
(fast)

Outer region
(intermediate)

Intermediate discrepancy ~ 12\%

TABLE XVI: Measured and Calculated Fission Rate Ratios for Selected Actinides in Flattop-25 by Barr et al. [15]. Data for the uranium isotopes and ${ }^{250} \mathrm{Pu}$ are ratioed to ${ }^{255} \mathrm{U}(\mathrm{n}, \mathrm{f})$, the remaining results are ratioed to ${ }^{239} \mathrm{Pu}(\mathrm{n}, \mathrm{f})$. The measurement location for those data given in the top half of the Table are near the center of the assembly ($\mathrm{r}=1.11 \mathrm{~cm}$), data given in the bottom half of the Table are from the tamper region ($\mathrm{r}=13.97 \mathrm{~cm}$). As these data have not been published previously, we also include the measured spectral indices in the second column of this Table. A generic 5\% uncertainty is judged appropriate for these data, but the values tabulated are given to the precision used in internal LANL documents.

Reaction	Measured Spectral Index	$\begin{aligned} & \text { ENDF/B- } \\ & \text { VIL. } 0 \text { C/E } \end{aligned}$	$\begin{aligned} & \text { ENDF/B- } \\ & \text { VII. } 1 \mathrm{C} / \mathrm{E} \end{aligned}$
${ }^{281} \mathrm{U}(\mathrm{n}, \mathrm{f})$	0.3155	0.921(46)	0.922(46)
${ }^{237} \mathrm{U}(\mathrm{n}, \mathrm{f})$	0.537	0.832(42)	0.892(45)
${ }^{238} \mathrm{U}(\mathrm{n}, \mathrm{f})$	0.1397	1.029(51)	$1.030(51)$
${ }^{239} \mathrm{Pu}(\mathrm{n}, \mathrm{f})$	1.307	1.039(52)	1.039(52)
${ }^{238} \mathrm{Pu}(\mathrm{n}, \mathrm{f})$	1.002	0.967(48)	0.950(47)
${ }^{240} \mathrm{Pu}(\mathrm{n}, \mathrm{f})$	0.549	1.043(52)	1.026(51)
${ }^{241} \mathrm{Pu}(\mathrm{n}, \mathrm{f})$	1.073	0.911(46)	0.911(46)
${ }^{242} \mathrm{Pu}(\mathrm{n}, \mathrm{f})$	0.482	0.961(48)	0.984(49)
${ }^{241} \mathrm{Am}(\mathrm{n}, \mathrm{f})$	0.577	0.918(46)	0.914(46)
${ }^{236} \mathrm{U}(\mathrm{n}, \mathrm{f})$	0.08	0.669(33)	0.672 (34)
${ }^{237} \mathrm{U}(\mathrm{n}, \mathrm{f})$	0.391	1.018(51)	0.973(49)
${ }^{238} \mathrm{U}(\mathrm{n}, \mathrm{f})$	0.02487	0.832(42)	0.832(42)
${ }^{230} \mathrm{Pu}(\mathrm{n}, \mathrm{f})$	1.145	0.985(49)	0.985(49)
${ }^{2385} \mathrm{Pu}(\mathrm{n}, \mathrm{f})$	0.708	0.968 (48)	0.946(47)
${ }^{240} \mathrm{Pu}(\mathrm{n}, \mathrm{f})$	0.26	0.899(45)	0.870(43)
${ }^{241} \mathrm{Pu}(\mathrm{n}, \mathrm{f})$	1.251	0.954(48)	0.953 (48)
${ }^{242} \mathrm{Pu}(\mathrm{n}, \mathrm{f})$	0.19	0.845(42)	0.871(44)
${ }^{241} \mathrm{Am}(\mathrm{n}, \mathrm{f})$	0.184	0.793(40)	0.784(39)

Survey of ICSBEP eigenvalue calculations (Kahler, LANL)

Energy of Average Lethargy values below $1.0 \mathrm{E}-6$ are largely "THERM" systems; values above $1.0 \mathrm{E}-1$ are largely "FAST" systems.
Fewer data exist the "INTERmediate" energy range.

${ }^{235} \mathrm{U}$ capture: DANCE \& RPI data solved the $0.5-2.5 \mathrm{MeV}$ region questions (But questions above 2.5 keV still)

${ }^{235} \mathrm{U}$ capture: we need more accurate data in the $2.5 \mathrm{keV}-\mathrm{MeV}$ region

Jandel's ratio method helped
Precision $<3 \%$ was achieved using simultaneous rate determination;

Rates of U5(ng) and U5(nf)
The same target \rightarrow same n flux for both reactions

Being implemented for ${ }^{239} \mathrm{Pu}$ (S. Mosby et al.)

New Plutonium-239 Capture Cross Section Data. But More Accurate Data are Needed $>1 \mathrm{keV}$

Results up to 1 keV are published
Experiment with thick target completed, analysis in final stages

Fission Decay Chain Measurements Motivate
 Prompt Fission Gamma-Ray Data at LANSCE/Lujan

Traditional approaches

$1 / \mathrm{m}$ plots (count rate v. control rod position, to identify asymptote \& critical)

Feynman variance of counts (doubles ...) to infer multiplication and k-eff

Decay of fission chain via fission-gamma-rays

+Time (~300 ns)

Short-Lived Isomeric states after U235+n

Isomeric states after U-235+n

- In high neutron fluence the secondary reactions can occur

$$
\begin{aligned}
& { }^{236} U^{*}: 1024 \mathrm{keV}(4-) T_{1 / 2}=100 \mathrm{~ns} \\
& { }^{236} \mathrm{U}^{\star}: 678 \mathrm{keV}(1-) T_{1 / 2}=3.7 \mathrm{~ns}
\end{aligned}
$$

Current work addresses resonance region

+ What is the population of these states after ${ }^{235} \mathrm{U}+\mathrm{n}$?
+ What are the n-reaction cross sections on these states?
A. Future - unresolved region En> 1 keV

Conclusions

Future upgrades at Lujan are planned to address 1-500 keV advances:

- Precise capture \& fission measurements
- Other reactions - inelastic, elastic scattering, e.g. with RPI staff
- Prompt fission gamma-ray data, isomers

