From nuclear data to nuclear reactors

Looping over nuclear science

Arjan Koning

NRG Petten

The Netherlands

October 2014 P(ND)^2-2, CEA-DAM, Bruyeres-le-Chatel

From nuclear data to reactors

A.J. Koning and D. Rochman, <u>"Towards sustainable nuclear energy: Putting nuclear physics to work"</u>, Ann. Nuc. En. 35, p. 2024-2030 (2008).

Looping over nuclear science

Feedback, sensitivity, uncertainty propagation,

Road to success:

- Use (extremely) robust software
- Store all human intelligence in input files and scripts
- Rely on reproducibility and quality assurance

EXFOR database

(Nuclear Reaction Data Center Network: IAEA, NEA, NNDC, JAEA, Obninsk, etc)

Cross section measurements in EXFOR

Total estimated cost of EXFOR (AK, private comm.): between 20 – 60 Billion Euro Total estimated value of EXFOR : priceless

TALYS code

General use:

- TALYS can be used for
 - In-depth single nuclide/reaction analyses
 - Global multi-nuclide calculations

Complete output:

Total, partial and residual production cross sections, (Double)differential spectra, Angular distributions per discrete level, Fission yields, Recoils, Isomeric production, Astrophysical reaction rates Gamma production, etc, (upcoming: integration of GEF: FY, nu, nubar, PFNS etc.)

Recent accomplishment: option to use all optical, level density, fission and pre-equilibrium models phenomenological (Woods-Saxon, Fermi gas, Hill-Wheeler, exciton) or microscopical (Hartree-Fock-Bogolyubov-based, by Hilaire, Goriely, Bauge)

Total estimated cost of TALYS : between 2 – 4 Million Euro Total estimated value of TALYS: no comment

TALYS publications

Initial probability distribution for TALYS parameters

For all nuclides for which experimental data exists:

- Sample parameters from a wide uniform distribution
- Obtain a wide scattering of random TALYS results and the standard deviation for every reaction channel of every nuclide
- Compare the results with all EXFOR data: 23490 experimental data sets = 2.7 million data points
- Count how many EXFOR points fall inside the 1sigma uncertainty band.
- Assess the width of the (prior) uniform distribution for the model parameters.

Starting point: "Expert" (Gaussian) parameter uncertainties

(A.J. Koning and D. Rochman, ``Modern nuclear data evaluation with the TALYS code system", Nucl. Data Sheets 113, 2841 (2012).) Origin: *Fingerspitzengefühl*

Parameter	uncertainty	Parameter	uncertainty	
	(%)		(%)	
Optical model				
r_V^n	2	d_1^n	10	
a_V^n	2	d_2^n	10	
v_1^n	2	d_3^n	10	
v_2^n	3	r_{SO}^n	10	
v_3^n	3	a_{SO}^n	10	
v_4^n	5	v_{so1}^n	5	
w_1^n	10	v_{so2}^n	10	
w_2^n	10	w_{so1}^n	20	
r_D^n	3	w_{so2}^n	20	
a_D^n	4			
r_V^p	4	d_1^p	20	
a_V^p	4	$d_2^{\hat{p}}$	20	
v_1^p	4	$d_2^{\tilde{p}}$	20	
$v_2^{\frac{1}{p}}$	6	r_{SO}^{p}	20	
$v_3^{\tilde{p}}$	6	a_{SO}^p	20	
$v_A^{\tilde{p}}$	10	v_{rol}^{p}	10	
w_1^p	20	v_{aa2}^{p}	20	
$w_2^{\frac{1}{p}}$	20	w_{p}^{p}	40	
r_{D}^{p}	6	w_{p}^{p}	40	
a_D^p	8	r_C^p	10	
λ_V^D	5	λV_1	5	
λ_W	5	λ_{W1}	5	
λV_{so}	5	λW_{so}	5	
	-		 Multi 	

Level density				
a	11.25-0.03125.A	σ^2	30	
γ	30	δW	$\pm 1 \text{ MeV}$	
α	30	β	30	
R_{σ}	30	γ	30	
E_0	20	E_M	20	
T	10	δ	$\pm 2 \text{ MeV}$	
K_{rot}	80			
C_{HFM}	30	δ_{HFM}	30	
Gamma-ray strength				
Γ_{γ}	20	$\sigma_{E\ell}$	20	
$\Gamma_{E\ell}$	20	$E_{E\ell}$	10	
$E_{\rm nor}$	20	E_{shift}	$\pm~0.8~{\rm MeV}$	
Fission				
B_f	10	$\hbar \omega_f$	10	
Pre-equilibrium				
M^2	30	$R_{\pi\pi}$	30	
$R_{\nu\pi}$	30	$R_{\pi u}$	30	
$R_{\nu\nu}$	30	R_{γ}	50	
$g_{ u}$	11.25-0.03125.A	$E_{\rm surf}$	20	
g_{π}	11.25-0.03125.A	$C_{\rm break}$	80	
C_{knock}	80	C_{strip}	80	

Multiply these uncertainties by 5 and sample ~200 parameters from uniform distribution

Fraction of EXFOR data inside 1-sigma uncertainty band

Random TALYS calculations for all nuclides compared with 23490 experimental data sets = 2.7 million data points

"Knowing nothing": Random TALYS parameters from initial parameter pdf: uniform distribution with uncertainty multiplier = 5

Initial probability distribution for cross sections

- Perform 1 global, unadjusted TALYS calculation for the entire periodic table of elements
- Compare the results with all EXFOR data: 23490 experimental data sets = 2.7 million data points
- Determine the average deviation between TALYS and experiment.
- Use the results as knowledge ("pseudo-experimental data") in a Bayesian Monte Carlo updating scheme.

Initial probability distribution for cross sections

• Use F-factor for each experimental data set:

WPEC SG-30 on quality assessement of EXFOR

Initial probability distributions for cross sections

Starting point: global TALYS central values and uncertainties based on cross sections for all nuclides

Create new parameter distributions using weights based on EXFOR

Each random data set k has a weight Bauge: BFMC, Capote-Trkov: UMC-B

$$w^{(k)} = \exp(-\chi^{2(k)}) / \exp(-\chi^{2(0)})$$

Create new parameter distributions using weights based on EXFOR

Assign the weight $w^{(k)}$ of random data set k to all TALYS parameters of that run

"Self-learning" sampling

Finally, all sampling is done from the real weighted parameter distributions

4000 random TALYS samples: n + "Zr

4000 random TALYS samples: n + "Zr

TENDL nuclear data library

A.J. Koning and D. Rochman ,"Modern nuclear data evaluation with the TALYS code system", Nuclear Data Sheets 113, 2841 (2012).

26

Total Monte Carlo

Loop over parameters: Total Monte Carlo

TMC example: criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D. Rochman, A.J. Koning and S.C. van der Marck, <u>``Uncertainties for criticality-safety benchmarks and keff</u> <u>distributions''</u>, Ann. Nuc. En. 36 810-831 (2009).

Yields uncertainties on benchmarks !

TMC example PWR burn-up calculations

D. Rochman, A.J. Koning and D. da Cruz, <u>Propagation of 235,236,238U</u> and 239Pu nuclear data uncertainties for a typical PWR fuel element", Nuclear Technology 179, no. 3, 323-338 (2012).

29

Fusion : Optimized Cu63,65 file vs Oktavian exp.

D. Rochman, A.J. Koning and S.C. van der Marck, <u>**Exact nuclear data uncertainty propagation</u> for fusion design", Fusion Engineering and Design 85, 669-682 (2010).

TMC beyond static systems: control rod ejection

- Reminder: Total Monte Carlo has nothing to do with the Monte Carlo or deterministic nature of the underlying software
- Produce nuclear databases for PANTHER containing macroscopic cross sections, kinetic parameters, isotope concentrations, in two energy groups, tabulated as function of burn-up, fuel and coolant temperature, boric acid concentration, control rod state, etc.

Da Cruz, Rochman, Koning, Physor2014

Westinghouse 3-loop reactor: k-eff, power, temperature and peaking factor after control rod ejection

400 Random data libraries for U-235, U-238, Pu-239 and thermal scattering

Uncertainty profile: Deviation from normal distribution

Final thought: Computers allow us to go back in time

- Monte Carlo: von Neumann
- Normal distribution: Gauss
- Inference: Bayes

• The methods are more and more reduced to sampling and counting.

Among competing hypotheses, the one with the fewest assumptions should be selected.

Ockham's razor - William of Ockham (c, 1287 - 1347)

