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General Flowchart of Sensitivity Methods



Focus on the Uncertainties Propagation



Step A : Problem Specification

• Computer code f

• Two types of input parameters (x, d)

− Fixed parameters d
− Uncertain parameters x

• Outputs of interest y = f(x, d)

• Quantity of interest on the Uncertainties Propagation

− Location : Mean µ, Min, Max, Mode, Median, Quantile qα
− Dispersion : Standard-deviation σ , Variance σ2, Range (Max−Min),

Coefficient of Variation (δ = σ/µ)
− Probability Density Function (PDF), Cumulative Density Function (CDF)



Step B : Quantification of uncertainty sources



Quantification of uncertainty with PDF

• Expert judgment
• With "large" dataset : Fitting the parameters of the PDF

− Parametric methods
− Non-parametric methods
− Statistical Tests

• With small dataset :
− Bayesian methods
− Bootstrap methods (resampling)



Commonly Used PDF (1/3)

1. Uniform Distribution

− The values in the interval [a, b] are equally probable
− 2 parameters a ("Minimum") and b ("Maximum")

f(x) = 1
b− a

1I[a,b](x)

− Mean : µ = b−a
2 (Median)

− Mode : any value in [a, b]
− Variance : σ2 = (b−a)2

12

2. Normal Distribution
− 2 parameters µ ("Mean") and σ ("Standard-

Deviation")

f(x) = 1
σ
√

2π
exp−

(x−µ)2

2 σ2

− Mean : µ (Mode, Median)
− Variance : σ2



Commonly Used PDF (2/3)

3. LogNormal Distribution

− A positive random variable x is said to follow a LogNormal law when lnx ∼ N
− 3 parameters x0 (lower bound) and (µ, σ) when ln(X) ∼

N (µ, σ)

f(x) = 1
(x− x0)σ

√
2π

exp
−(ln(x−x0)−µ)2

2σ2 ∀x > x0

− Mean : µX = exp(µ+σ2
2 )

− Median : exp(µ)

− Mode : exp(µ−σ2)

− Variance : µ2 × (expσ2 −1.)



Commonly Used PDF (3/3)

4. Beta Distribution
− 4 parameters α, β (shapes) & x0 <

x1 (bounds)

f(x) = uα−1 ∗ (1− u)β−1

B(α, β)
∀x ∈ [x0, x1]

with u = x−x0
x1−x0

− Mean : x0 + (x1 − x0) α
α+β

− Mode : depends on (α, β)
− Variance : (x1 − x0)2 αβ

α+β+1



Parametric Estimation
• Let (x1, x2, · · · , xn) an i.i.d sample of a PDF f(x, θ) where θ ∈ Θ is a vector of

parameters for this family. The true value of the parameter θ? is unknown
• Build an estimator θ̂ which would be as close to the true value θ? as possible

1. Maximum Likelihood (MLE)
The method of maximum likelihood selects the set of values of the model parameters
that maximizes the likelihood function. This function measures the "agreement" of
the selected model with the observed data.

θ̂MLE = arg max
θ∈Θ

1
n

ln(
n∏

i=1
f(xi|θ)) ... if any maximum exists

2. Moments Method (MM)
− One starts with deriving equations that relate the population moments to the

parameters θ
− The moments are estimated from the given sample
− The equations are then solved for the parameters θ, using the sample moments

in place of the (unknown) population moments

gk(θ1, θ2, · · · , θk) = IE[X]k = µk and µ̂k = 1
n

n∑
i=1

xk
i = gk(θ̂1, θ̂2, · · · , θ̂k)



Non-parametric methods : Histogram

• The histograms are classical density estimation

• The followings steps are needed to build the histogram:

− Arrange the sample in increasing order;
− Subdivide the range of the sample into several equal intervals, and count the

number of observations in each intervals;
− plot the number of observations in each interval versus the random variable

• but the form depends on the number of bins

1. Sturges Nbin = log2(n) + 1
2. Scott Nbin = (xmax − xmin) ∗ 3√n/3.5σ̂x

3. Freedman & Diaconis Nbin = (xmax − xmin) ∗ 3√n/2 ∗ (Q0.75
x −Q0.25

x )



Non-parametric methods : Kernel Methods

• A function K : IR→ IR is said a Kernel if∫
K(u) du = 1.

• Often, but not necessarily,

− K is symmetric around the origin: K(−u) = K(u) ∀u
− K is positive: K(u) > 0 ∀u

• ∀h > 0,

f̂n,h(x) = 1
n

n∑
i=1

1
h
K(Xi − x

h
)

is a kernel estimator of the density f (
∫
f̂n,h(x) dx = 1 )

• Kernel approach is a histogram which, for estimating the density of f(x), has been
shifted so that x, say, lies at the center of a mesh interval. And For evaluating the
density at another point, say y, the mesh is shifted again, so that y is at the center
of a mesh interval.

• The parameter h is a smoothing parameter called bandwidth.
More greater h is, more the estimation f̂n,h is smooth.



Non-parametric methods : Kernel Methods

• Optimal bandwidth with the Silverman Rule (1996)

hn = 1.364× αK ×Min{σ̂, Iqr
1.349

} × n−1/5

with

1. σ̂ is the sample standard deviation
2. Iqr is the "InterQuartile Range"

(Iqr = q0.75 − q0.25)
3. αK is a constant that only depends on the used kernel

Kernel K(x) αK

Rectangular 1/2 , |x| < 1 1.3510
Triangular 1− |x| , |x| < 1 1.8882
Epanechnikov 3

4(1− x2) , |x| < 1 1.7188
Biweight 15

16(1− x2)2 , |x| < 1 2.0362

Gaussian exp−x2/2
√

2π
0.7764

Geyser database for Gaussian
Kernel (left) waiting b = 4.70,

(right) duration b = 0.39



Goodness-of-Fits techniques

• QQPlot (Graphical methods)

− a QQ-plot ("Q" stands for Quantile) is a probability
plot to compare two probability distributions by
plotting their quantiles against each other

− A point (x, y) on the plot corresponds to one
of the quantiles of the second distribution (y-
coordinate) plotted against the same quantile of
the first distribution (x-coordinate).

− If the two distributions being compared are similar, the points in the QQ-plot
will approximately lie on the line y = x

− If the distributions are linearly related, the points in the QQ-plot will approxi-
mately lie on a line, but not necessarily on the line y = x.

− Select one axe for the theoretical distribution for Goodness-of-Fit test



Goodness-of-Fits techniques

• Statistical Tests
− Chi-Squared : The basic idea is to partitioned the

range of the sample into k cells, and compare the ob-
served frequency Oi with the expected frequency Ei in
each cell i

χ2 =
k∑

i=1

(Oi − Ei)2

Ei

which follows a χ2 distribution with (k − 1 − t) degrees of freedom, where t is
the number of parameters of the distribution to estimate

− Tests based on EDF Statistics ("Empirical Distribution Function")
? Measures the discrepancy between the empirical and

the theoretical CDFs (based on the differences bet-
ween Fn(x) and F (x))

? Two classes : the supremum and the quadratic

D = sup
x
|Fn(x)− F (x)|

Q = n

∫ +∞

−∞
(Fn(x)−F (x))2ψ(x)dx where ψ is a weight function



Goodness-of-Fits techniques

− For ψ(x) = 1 we obtain the Cramer-von Mises Tests, denoted as W 2:

W 2 = n

∫ +∞

−∞
(Fn(x)− F (x))2dx

− For ψ(x) = 1.
F (x)(1.0−F (x)) we obtain the Anderson-

Darling test, denoted A2:

A2 = n

∫ +∞

−∞

(Fn(x)− F (x))2

F (x)(1.0− F (x))
dx

• The χ2 statistic is the lower powerful for continuous PDF

• EDF statistics are usually much more powerful than the χ2 statistic (where data
must be grouped, then loss of information)

• the Kolmogorov-Smirnov D statistic is the most well-known of the EDF statis-
tics, but it is often much less powerful than the quadratic statistics W 2 and A2

• A2 and W 2 give often similarly values, but A2 is on the whole more powerful when
the distribution F departs from the true distribution in the tails (weight function)



Step C : Propagation of uncertainty sources



Steps of Uncertainties Propagation

• Generate Design of Experiments ("DoE")

− Monte-Carlo Sampling ("SRS"), Latin HyperCube Sampling ("LHS")
− quasi Monte-Carlo Sampling ("qMC")
− Low Discrepancy Sequences ("Space-Filling Design")

Take into account correlations between variables

• Evaluate the code for each points of the DoE (sequential on a PC, or parallel on
MultiCore PC/Cluster)

− Substitute the values on the current point into the input files of the code
− Launch the code with the new input files
− Catch the output values of the variables of interests

Using "Surrogate Model" (linear, polynomial, Artificial Neural Network, Kriging)
to reduce the computational times of the code evaluation

• Analyze the Quantity of interest by statistics

− Univariate attribute
− Data Modelisation with PDF or Kernel (as Step B)
− Goodness-of-Fit Techniques (as Step B)



Univariate Case : "Location" parameters

The effect of the "location" parameter is to translate the graph relative to the standard
distribution

• Mean µ :

µ = 1
nS

nS∑
i=1

xi

• Mode M : Value where the probability is the greatest value
• Median q0.5 : it is the 0.5-quantile

q0.5 as IP [X ≤ q0.5] = 0.5 = IP [X ≥ q0.5]

• α-Quantile qα with α ∈ [0, 1] :

qα as IP [X ≤ qα] = α

• Quartiles q0.25, q0.50, q0.75
• Extremes values min,max



Univariate Case : "Dispersion" parameters

The effect of a "dispersion" parameter is to stretch|shrink the standard distribution

• Variance V ar[X] : measure of spread in the data about the mean V ar[X] = IE[(X−IE[X])2],
and can be estimated by :

V ar[X] = 1
nS − 1

nS∑
i=1

(xi − µ)2

• Standard Deviation σ : to have an information in the same unit as the variable

σ =
√
V ar[X]

• Coefficient of Variation δ : σ does not indicate the degree (%) of dispersion
around the mean value µ, a nondimensional term can be introduced :

δ = σ

µ

• Range R :

R = Max−Min

• InterQuartile Range Iqr :

iqr = q0.75 − q0.25



Univariate Case : "Shape" parameters

A "shape" parameter is any parameter of a PDF that is neither a location parameter
nor a scale parameter. Such a parameter must affect the shape of a distribution ra-
ther than simply shifting it (location parameter) or stretching/shrinking it (dispersion
parameter).

• Moment order p : µp := IE[(X − IE[X])p]

from Wikipedia

µp = 1
nS

nS∑
i=1

(xi − µ)p

• Skewness : γ1 is a measure of the asymmetry of the PDF
about its mean. The skewness value can be positive or ne-
gative, or even undefined.

γ1 := IE

[
(X − µ

σ
)3

]
= µ3

σ3 = IE[X3]− 3µσ2 − µ3

σ3

• Kurtosis : γ2 is a measure of the "peakedness/flatness" of
the PDF

γ2 = µ4
σ4 − 3.0



Univariate Case : Graphical Representations

• Histogram

H(x) = 1
nS

nS∑
i=1

1I[ti,ti+1](x)
(ti+1 − ti)

when x ∈ [ti, ti+1]

where [a, b] =
⋃

i [ti, ti+1]
• Empirical Cumulative Density Function

(eCDF)

Fn(x) = 1
nS

nS∑
i=1

1I(Xi ≤ x)

• Boxplot (Tukey)
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Uranie : CEA/DEN Uncertainty Platform

• Root (CERN), Mixmod (Gaussian Mixtures - INRIA),

Opt++ (Optimization - Sandia), NLOpt (Optimization - MIT)

• Data access :

− Flat file with header ( "Salomé Table" )
− TTree (internal ROOT)
− SQL Data base (MySQL, PostgreSQL, ...)

• Uncertainty/Sensitivity/Optimisation methods in URANIE

− Design Of Experiments (SRS, LHS, ROA, qMC, MCMC, Copulas)
− Clustering methods
− Surrogate models (Polynomial, Artificial Neural Networks, Kriging, GLM)
− Non Intrusive Spectral Projection : Generalized Polynomial Chaos
− Inverse Quantification of Uncertainty (Circe)
− Sensitivity Analysis: Local, Morris, Regressions (Pearson, Spearmann), Sobol, FAST &

RBD
− Optimization, Multi-Criteria (Vizir library : Genetic Algorithms)
− Computing distribution (HPC : TGCC, CCRT)



The Uranie project : v3.5 - 2014/07

CDash reports

Deprecated message

Uranie SourceForge site

• 115 000 lines & 235 classes

• Version of ROOT :
v5.34.13 (2013 Nov.)
v5.32 (2011 Dec.)
v5.34.19 (2014/07/09)

• Compilation with cmake
(Linux-Makefiles/Windows-Visual Project)

• CDash reporting

− Unitary tests with CppUnit
− Coverage with gcov
− Memory check with valgrind

• Exceptions (Warning, Error, Deprecated)

• Open source since 2013/05

http://sourceforge.net/projects/uranie



Using Uranie on Supercomputers

• Distribution of computations:

− Sequential on PCs
− Parallel on Multicore PCs
− Parallel on Cluster (LSF, SGE, SLURM, LoadLeveler) with

bsub < BsubFile

• The mechanism for launching computations in Uranie is transparent for the user :
the Uranie script is the same whether you run it on the local machine, a cluster
or a supercomputer

• The sequence is the following:

− The design of experiments is created (depending on the method and on the
uncertainties on the input parameters)

− Uranie analyses the machine through the environment variables and deduces
the number of available processes

− A pool of processes is managed in order to distribute computations as the pro-
cessors become available



Using Uranie on Supercomputers

• Chosen strategy

− One job in which the computations are hos-
ted

• Aim : being able to run design of experiments

− On serial codes
− On MPI-based parallel codes
− On coupled simulations (with SALOME plat-

form or with Mpi)

• Difficulty related to the fact that MpiRun can-
not call itself

• Chosen implementation

− The master node manages the distribution of
computations as processors become available

− When a processor group becomes available,
the master process is forked and runs Mpi-
Run

− The end of the job execution is detected by
analyzing the state of the child process
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Example of Uncertainties Propagation - Context

• Thermal hydraulic code (study in 2009)

• CPU time for single computation :

∼ 5 minutes (approximation of the true code)

• Design of Experiments

− nX = 32 input attributes with Uniform and Normal Distributions

− nY = 23 output attributes

− nS = 1500 points

The Code’s developper use to see one output yi versus one input xj :
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Example of Uncertainties Propagation (1/6)

tds->Draw( "pdf:fdf:pppc:flfc:iaecu:pdc:ddf:pdh:ddc:fdet:mbfdc","","para");



Example of Uncertainties Propagation (2/6)



Example of Uncertainties Propagation (3/6)



Example of Uncertainties Propagation (4/6)



Example of Uncertainties Propagation (5/6)



Example of Uncertainties Propagation (6/6)



Conclusions
• The Uncertainties Propagation procedure

• A presentation of the Uranie Platform

• UQ example ("powerful" CobWeb/Parallel Coordinates graphic)
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Thank you for your attention!

Questions?


