Transfer-induced fission in inverse kinematics: Impact on experimental and evaluated nuclear data bases

F. Farget et al., GANIL

F. Farget, <u>O. Delaune, X. Derkx, C</u> . Golabek,	
T. Roger, A. Navin, M. Rejmund, <u>C. Rodriguez-Tajes</u> , C. Schmitt	GANIL, France
KH. Schmidt, B. Jurado	CENBG, France
D. Doré, M. Delphine de Salsac	SPhN, France
J. Benlliure, <u>M. Caamaño,</u> E. Casarejos, D. Cortina,	
B. Fernandez-Dominguez, <u>D. Ramos</u>	USC, Spain
L. Audouin, CO. Bacri,	IPNO, France
L. Gaudefroy, J. Taieb	CEA DIF, France
A. Heinz	Chalmers U., Sweden

Why inverse kinematics for fission?

Isotopic fission yields

Fission yields in direct kinematics

Fission in inverse kinematics: kinematical boost for a direct identification of the fission fragments

That inverse kinematics Bring more than isotopic distribution

With some price to pay

Transfer-induced fission in inverse kinematics @ GANIL

- 10 actinides produced
- E* distribution
- Full resolution in (Z,A) of fragments
- TKE
- Détermination of scission fragments

Can't choose your actinide Can't choose your E*

Transfer-induced fission in inverse kinematics

S. Pullanhiotan et al., NIM 593 (2008) 343 M. Rejmund et al., NIMA 646 (2011) 184

Transfer-induced fission in inverse kinematics

Towards an extended use of surrogate reactions : excitation of the outgoing particle needs to be considered

In 10-15% of the transfer reactions, few MeV of E* are taken away by the transfer partner (Only first states have been observed)

C. Rodriguez-Tajes et al., PRC (2014) 024614

Fission probabilities

Agreement with previous data : plateau and positions of the thresholds Difference in slope and structure at the threshold (reaction mechanism)

Isotopic distribution of fission fragments

Excellent control of the spectrometer transmission

Evolution of yields with fissioning system

D. Ramos, USC PhD

Evolution of yields with E*

D. Ramos, USC PhD

Neutron excess of fission fragments

Charge polarization

M. Caamaño et al., PRC 88 (2013) 024605

Kinematics properties of fission fragments

²⁵⁰Cf (θ=φ=0) V_{FS}= reaction kinematics ²⁴⁰Pu(θ, ϕ V_{FS}) measured in SPIDER assuming a direct (two-body) reaction.

Reconstruction of the vecolity vector in the reference frame of the fissioning system

Neutron number N

Average fission velocities <V>(Z)

$$TKE = 1.44 \frac{Z_1 Z_2}{D}$$

$$\begin{split} D &= r_0 (A_1^{*1/3} (1 + \frac{2}{3}\beta_1) + A_2^{*1/3} (1 + \frac{2}{3}\beta_2)) + d, \\ \text{d=2.5 fm for 240Pu (2p transfer, E*=9 MeV)} \\ \text{d=2.7 fm for 250Cf (fusion, E*=45 MeV)} \\ \text{B}_1 &= \beta_2 = 0.6 \end{split}$$

Scission fragment neutron excess !!

Average velocity not modified by post-scission evaporation

Momentum conservation

Charge and mass conservation

$$Z_2 = Z_{FS} - Z_1$$

$$\frac{V_1}{V_2} = \frac{A_2^*}{A_1^*}$$

M. Caamaño, F. Farget et al.,

Scission configuration investigation: ²⁴⁰Pu E*=9MeV

Scission point model: minimisation of the total energy

$$E_{tot} = E_{LD_1} + S_1(Z_1, N_1, \tau) + E_{LD_2} + S_2(Z_2, N_2, \tau) + V_{Cb}(Z_1, N_1, \beta_1, Z_2, N_2, \beta_2, d) + V_n(Z_1, N_1, \beta_1, Z_2, N_2, \beta_2, d)$$

Liquid-drop energy

Myers & Swiatecki, Lysekil, Ark. Phys. 36 (1967) 343

$$\begin{split} E(Z,N,\beta) = & a_a A - a_s A^{2/3} (1 + 0.4\alpha^2) - 1.78 I^2 (a_a A - a_s A^{2/3} (1 + 0.4\alpha^2)) \\ & + Z^2 (\frac{0.705}{A^{1/3}} (1 - 0.2\alpha^2) - \frac{1.15}{A}) - SE(Z,N) \end{split}$$

Scission configuration investigation: ²⁵⁰Cf E*=45MeV

Scission point model: minimisation of the total energy

$$E_{tot} = E_{LD_1} + S_1(Z_1, N_1, \tau) + E_{LD_2} + S_2(Z_2, N_2, \tau) + V_{Cb}(Z_1, N_1, \beta_1, Z_2, N_2, \beta_2, d) + V_n(Z_1, N_1, \beta_1, Z_2, N_2, \beta_2, d)$$

Liquid-drop energy

$$E(Z, N, \beta) = a_a A - a_s A^{2/3} (1 + 0.4\alpha^2) - 1.78I^2 (a_a A - a_s A^{2/3} (1 + 0.4\alpha^2)) + Z^2 (\frac{0.705}{A^{1/3}} (1 - 0.2\alpha^2) - \frac{1.15}{A}) - SE(Z, N)$$

$$Myers & Swiatecki, Lysekil, Ark. Phys. 36 (1967) 343$$

Post-scission neutron evaporation

Total Kinetic Energy

$$\begin{split} \mathsf{V}(\mathsf{Z}_1) &\Leftrightarrow \mathsf{V}(\mathsf{Z}_2) = \mathsf{V}(\mathsf{Z}_{\mathsf{FS}} - \mathsf{Z}_1) \\ TKE &= \frac{1}{2}m_0 A_1 V_1^2 + \frac{1}{2}m_0 A_2 V_2^2 + \\ TKE &= 1.44 \frac{Z_1 Z_2}{D} \\ D &= r_0 (A_1^{*1/3} (1 + \frac{2}{3}\beta_1) + A_2^{*1/3} (1 + \frac{2}{3}\beta_2)) + d, \end{split}$$

M. Caamaño, F. Farget et al.,

Deformation at scission !!

Summary and outlook

Transfer-induced fission in inverse kinematics coupled to the spectrometer VAMOS allows to

- Investigate a ten of fissioning actinides, heavier than 238U
- With E* ranging from few MeV above the fission barrier to 45 MeV
- Isotopic fission-fragment distributions are available for each system
- With kinematics properties of the fission fragments it is possible to reconstruct the properties of the fragments at scission
 - Their TKE
 - Their average neutron excess <N>/Z
 - Deduce the prompt neutron multiplicity <v>(Z)
- The present results show the importance to consider polarisation in the emergence of the fragments
- Further developments in the description of the scission fragments (evolution of binding energy with E* and deformation, sharing of E*) are needed !!
- Impact on evaluated fission yield will be decisive in the next decade

Message to the data-evaluation community

- These type of experiments are held in laboratories meant for « fundamental nuclear physics »
- They rely on the use of expensive state-of-the art spectrometers and heavy-ion beam facilities
- It is difficult for us (experimentalists) to defend our goals
 - Too much applied (not interesting)
 - Not really applied (Fission Yields not in the HPRL, actinides not the good ones for applications, energy range not adapted...)
- If there exists an interest in this type of data it is important to find a way to defend at a high level of strategy and funding decision
 - The sustainability of U beams
 - The adequate human resources to pursue these programmes