

Fission studies with TPC and SPIDER: current status and future directions

Fredrik Tovesson
Los Alamos National Laboratory

P(ND)²-2 – Second International Workshop on Perspectives on Nuclear Data for the Next Decade, Oct. 14-17, 2014, Bruyères-le-Châtel, France

Outline

- Introduction
- The Los Alamos Neutron Science Center (LANSCE)
- Fission Research
 - Cross sections (TPC)
 - Fragment properties (SPIDER, Gridded ionization chambers)
- Outlook and Summary

Introduction

- We are in the midst of a fission renaissance
 - There is a surge in experimental efforts
 - Fragment spectrometers (STEFF, SPIDER, VERDI)
 - Inverse kinematics fission studies (GSI, GANIL, RIKEN)
 - Surrogate reactions (TAMU)
 - The fission Time Projection Chamber (TPC)
 - Activation measurements (TUNL)
 - Exciting theory developments
 - Macroscopic-microscopic model
 - Microscopic model
 - Monte Carlo method for fragment de-excitation
- What can we learn from new experiments?
 - More correlated information
 - Systematic studies of many systems, excitation energies
 - Improve accuracy & precision uncertainty quantification (UQ)

The Los Alamos Neutron Science Center (LANSCE)

Isotope Production

- Spallation neutron source
- Moderated & un-moderated flight paths
- Neutron time-of-flight

LANSCE provide neutrons from thermal to hundreds of MeV

- High neutron flux over the full energy range
- Excellent resolution for fast neutrons, reasonable for slow neutrons

Nuclear Science Capabilities

TPC fission cross sections

GEANIE gamma production, Pu(n,2n)

Chi-Nu neutron output

SPIDER fission yields

DANCE

APOLLO √-rays for ion beam experiments

Fission Cross Sections

- F. Tovesson, A. B. Laptev, T. S. Hill, Fast neutron-induced fission cross sections of 233,234,236,238U up to 200 MeV, accepted for publication in Nucl. Sci Eng.
- **F. Tovesson**, T. S. Hill, Cross section for $^{239,241}Pu(n,f)$ in the range $E_n = 0.01 \text{ eV}$ to 200 MeV, Nucl. Sci. Eng. **165**, 224 (2010).
- F. Tovesson, T. S. Hill, M. Mocko, J. D. Baker, C. A. McGrath, Neutron Induced Fission of 240,242 Pu from 1 eV to 200 MeV, Phys. Rev. C 79, 014613 (2009).

The TPC will reduce measurement uncertainties to 1%

Beam

	Time-of-flight uncertainty	0.3%
_	Beam profile	0.1%
_	Neutron background	0.2%

Target

_	Total number of atoms	0.3%
_	Uniformity of deposit	0.3%
_	Contaminants	0.1%

Fission detection

_	Efficiency	0.1%
_	Dead-time	0.2%
_	Fission identification	0.2%

Normalization

Accuracy of standard reaction 0.3%

Total uncertainty: 0.7%

The fission TPC was miniaturized

for fission studies

- ~4π solid angle coverage
- MICROMEGAS detector
 - 5952 readout pads
- Custom digital electronics
 - \$55/channel, 30 MB/s sustained data rates
- Large dynamic range designed for normalization to H(n,n)H
- Complete software suite includes remote online monitoring and detailed **GEANT-based simulation**

M. Heffner, D.M. Asner, R.G. Baker, el al., A Time Projection Chamber for High Accuracy and Precision Fission Cross Section Measurements, submitted to Nucl. Instr. and Meth.

The U-238(n,f) cross section is our benchmark

EST. 1943

Unprocessed signals

Autoradiograph

Fragment energy

Beam profile

Neutron TOF

Track length vs energy

Fission fragment properties are studied with SPIDER and 2E

SPIDER (2E-2v)

High resolution, low efficiency

low resolution. high efficiency

Gridded IC (2E)

- Fragment mass, charge, energy
- Total kinetic energy (TKE)
- Neutron energy dependence

High resolution mass yields are measured with SPIDER

- Demonstrated with Cosi-fan-Tutti at ILL
- SPIDER uses ionization chambers for energy measurement
 - 1% energy resolution for α-particles, 0.5% for fission fragments
 - Thin entrance window (mylar or SiN)
- Fast, position sensitive TOF detectors
 - Carbon conversion foils
 - Electrostatic mirror
 - Micro-channel plates
 - Delay-line anode

Performance of TOF detectors and Los Alamos ionization chambers meets requirements

1% energy resolution for alpha-particles

C.W. Arnold, F. Tovesson, K. Meierbachtol, et al., Development of position-sensitive time-of-flight spectrometer for fission fragment research, Nucl. Instr. and Meth. A 764, 53 (2014).

Mass yields in ²⁵²Cf(n_{th},f) was measured with one arm instrumented

stop detector pos.

- 10⁵ Bq ²⁵²Cf source
- 20 μg/cm² carbon conversion foils for TOF measurement
- 64 μg/cm² Si₃N₄ window between vacuum and IC

Preliminary mass yield agrees well with literature

The 2E-method provides mass yields with 4-5 amu resolution

- Kinetic energy of both fragments are measured in coincidence
- The fragment masses are calculated using mass and momentum conservation
- Measurements performed with Frisch-gridded ionization chambers
 - High efficiency
 - Provide emission angle information
- Requires correction for
 - Grid inefficiency
 - Energy loss in target
 - Pulse height defect
 - Nu-bar(A) ("saw tooth")

A new digital DAQ was developed for the IC measurements

- The large neutron energy range poses a challenge for the DAQ system design
- 12-bit digitizers (CAEN V1720) with 250MHz sampling rates provide sufficient energy and timing resolution
- On-board memory and triggering management allows virtually dead-time less operation
- Digital signal processing allows for better pile-up handling

S. Mosby, F. Tovesson, A. Couture, D. Duke, V. Kleinrath, R. Meharchand, K. Meierbachtol, J. M. O'Donnell, B. Perdue, D. Richman, D. Shields, *A fission fragment detector for correlated fission output studies*, **Nucl. Instr. and Meth. A 757, 75 (2014).**

Mass yields and TKE were measured for ^{235,238}U

- Data was collected for U-235 and U-238, analysis in progress
- Plans to measure Pu-239 in fall 2014 / spring 2015

Future developments

Time Projection Chamber

- Further reduce fission cross section uncertainties
- Fission fragment studies with Bragg spectroscopy and track length
- Neutron-induced light charged-particle emission: cross sections and angular distributions
- Ternary fission studies

SPIDER

- Study fission yields at fast neutron energies (increase efficiency)
- Fission fragment studies of several isotopes
- Correlation between fragments and neutron- and gamma emission

Summary

- The LANSCE facility provides the capability to study fission over ten decades of incident neutron energy
- Fission cross section have been studied extensively at LANSCE; the Time Projection Chamber will significantly improve the accuracy
- Fission fragments properties are being studied by a combination of high resolution, low efficiency and low resolution, high efficiency detectors
- Future developments will further reduce uncertainties on nuclear data and provide a more complete picture of the fission process

Collaborations

Lawrence Livermore Nat. Lab.

Oregon State

Colorado School of Mines

