Uncertainties \& Correlations in Nuclear Fission Data The role of models and experiments

PatrickTalou

Nuclear Physics Group, Theoretical Division, Los Alamos National Laboratory, USA

Second International Workshop on
"Perspectives for Nuclear Data for the Next Decade" Oct. 14-17, 2014, Bruyères-le-Châtel, France

LA-UR-14-27975

Nuclear Fission Data

Selected examples

Fission Cross Sections
$(n, f),(p, f),(\gamma, f),(t, p f)$, etc

Nuclear Fission Data

Selected examples

Fission Cross Sections
$(n, f),(p, f),(\gamma, f),(t, p f)$, etc

Fission Fragment Yields

$$
Y(A, Z, K E)
$$

Nuclear Fission Data

Selected examples

Fission Cross Sections
$(\mathrm{n}, \mathrm{f}),(\mathrm{p}, \mathrm{f}),(\gamma, \mathrm{f}),(\mathrm{t}, \mathrm{pf})$, etc

Fission Fragment Yields Y(A,Z,KE)

Prompt Fission Neutrons and Gamma Rays
(multiplicity, spectrum, correlations)

Nuclear Fission Data

Selected examples

Fission Cross Sections

$(\mathrm{n}, \mathrm{f}),(\mathrm{p}, \mathrm{f}),(\gamma, \mathrm{f}),(\mathrm{t}, \mathrm{pf})$, etc

- Others?
β-delayed neutrons and gammas, fission fragment angular distributions, pre-scission neutrons and photons, prompt X-rays, etc.

Prompt Fission Neutrons and Gamma Rays

(multiplicity, spectrum, correlations)

Uncertainties \& Correlations

Uncertainties \& Correlations

- Stemming from both experiments and models

Uncertainties \& Correlations

- Stemming from both experiments and models
- Some examples:
- Experiments:
- Fission fragment yields
- Prompt fission neutrons
- Theory:
" Uncertainties in modeling fission cross sections and "empirical fission barriers"
- Modeling the prompt fission neutron spectrum

Uncertainties in Fission Experiments

Two examples

Uncertainties in Fission Experiments

Two examples

- Fission FragmentYields
- Typical resolutions:
- 3-5 amu for $Y(A)$
- 1-2\% in Kinetic Energy
- $\Delta \mathrm{Z} \sim 1$
- Neutron emission from fragments
- Products, not fragments, are measured!
- Very little data on E* dependence

Uncertainties in Fission Experiments

Two examples

- Fission FragmentYields
- Typical resolutions:
- 3-5 amu for $Y(A)$
- 1-2\% in Kinetic Energy
- $\Delta Z \sim 1$
- Neutron emission from fragments
- Products, not fragments, are measured!
- Very little data on E* dependence

- Prompt Fission Neutrons
- Multiplicity measurements (v)
- Large Gd-loaded tanks
- No energy resolution
- Spectrum (χ)
- Low-energy (<500 keV) very sensitive to multiple scattering
- High-energy (>5 MeV) poor statistics

Uncertainties in Fission Theories \& Modeling

Two examples

Uncertainties in Fission Theories \& Modeling

Two examples

Fission Cross Sections

- Fission barrier
- Double- or triple-humped
- Deviations from simplified parabolas
- Inertia tensor
- Transition states, level densities at saddle points
- Class-I,II states coupling

Uncertainties in Fission Theories \& Modeling

Two examples

Fission Cross Sections

- Fission barrier
- Double- or triple-humped
- Deviations from simplified parabolas
- Inertia tensor
- Transition states, level densities at saddle points
- Class-I,II states coupling

Prompt Fission Neutrons

- Simple models
- Madland-Nix, Watt, Maxwellian
- Few model parameters, easy to adjust but strong correlations
- More sophisticated
- Monte Carlo Weisskopf \& HauserFeshbach
" Many parameters, more difficult to adjust but (possibly) more faithful
- Various data-calculated

The Nuclear Data Evaluation Process
(in a nutshell)

The Nuclear Data Evaluation Process

(in a nutshell)

> (differential)
> Experimental Data

The Nuclear Data Evaluation Process

(in a nutshell)

(differential)
Experimental Data

Theory/Modeling

The Nuclear Data Evaluation Process

(in a nutshell)

> (differential) Experimental Data

Theory/Modeling

ENSDF
RIPL-3

The Nuclear Data Evaluation Process

(in a nutshell)

The Nuclear Data Evaluation Process

(in a nutshell)

"Least-Square Fits"

The Nuclear Data Evaluation Process

(in a nutshell)

The Nuclear Data Evaluation Process

(in a nutshell)

(differential)
Experimental Data

Theory/Modeling

Model Input
Parameters

The Nuclear Data Evaluation Process

(in a nutshell)

(differential)
Experimental Data

Comparisons with integral benchmarks

The Nuclear Data Evaluation Process

(in a nutshell)

(differential)
Experimental Data

Comparisons with integral benchmarks

For fission... limited use of correlated data to constrain evaluations \rightarrow PFNS, $\sigma_{f}\left(E^{*}\right)$, FFAD, \ldots

Modern Fission Experiments

Some examples from Los Alamos

Time-Projection Chamber for fission cross-section measurements

SPIDER 2E-2v
for fission fragment yield measurements

Chi-Nu setup
(22 6Li glass detectors) to measure prompt fission neutron spectra

DANCE w/ NEUANCE for correlated measurements on prompt fission neutrons and γ rays with fission fragments

Modern Fission Experiments Some examples from Los Alamos

Time-Projection Chamber for fission cross-section measurements

SPIDER 2E-2v
for fission fragment yield measurements

Chi-Nu setup
(22 6Li glass detectors) to measure prompt fission neutron spectra

DANCE w/ NEUANCE for correlated measurements on prompt fission neutrons and γ rays with fission fragments

Many other facilities and detector setups in construction worldwide:

- EAR2 at CERN
- NFS @ SPIRAL2 @ GANIL
- IGISOL-JYFLTRAP
- SOFIA: Studies On Fission with Aladin (reverse kinematics) at GSI
- STEFF
- ...
- cf. Talk by X.Ledoux

Modern Fission Experiments Some examples from Los Alamos

Time-Projection Chamber for fission cross-section measurements

SPIDER 2E-2v
for fission fragment yield measurements

Chi-Nu setup
(22 6Li glass detectors) to measure prompt fission neutron spectra

DANCE w/ NEUANCE for correlated measurements on prompt fission neutrons and γ rays with fission fragments

Many other facilities and detector setups in construction worldwide:

- EAR2 at CERN
- NFS @ SPIRAL2 @ GANIL
- IGISOL-JYFLTRAP
- SOFIA: Studies On Fission with Aladin (reverse kinematics) at GSI
- STEFF
- ...
- cf. Talk by X.Ledoux
- New data to fill obvious gaps in our experimental database
- Better accuracy
- Innovative measurements
- Correlated data

■ ...

Modern Fission Experiments

Elsewhere

SOFIA: Studies on Fission with Aladin @ GSI reverse kinematics, GSI: $\Delta A \sim 0.6-0.8, \Delta Z \sim 0.4$

Source or target

TOF 50 cm
FALSTAFF @ NFS
Four Arm cLover for the STudy of Actinide Fission Fragments

EAR2 @ n_TOF @ CERN
Fission x / s measurements of actinides with half-lives $\sim y e a r s$

NFS @ SPIRAL 2 @ GANIL

NFS @ SPIRAL2 @ GANIL

Modern Fission Theories \& Models

Time-Dependent Microscopic Approaches

Modern Fission Theories \& Models

Time-Dependent Microscopic Approaches

From ascr-discovery.science.doe.gov Credit: A. Staszczak et al., ORNL

W.Younes, FIESTA school, Sep. 8-9, 2014, Santa Fe

N.Dubray, FIESTA workshop, Sep. 10-12, 2014, Santa Fe

Modern Fission Theories \& Models

Time-Dependent Microscopic Approaches

From ascr-discovery.science.doe.gov Credit: A. Staszczak et al., ORNL

W.Younes, FIESTA school, Sep. 8-9, 2014, Santa Fe

N.Dubray, FIESTA workshop, Sep. 10-12, 2014, Santa Fe

Uncertainties \& Errors...

- Fundamental n-n force
- Constrained calculations; parameter space?
- Class-3 PES (N.Dubray)
- Correlations s.p. and collectivity (H.Goutte)
- Need for very large scale computations

Modern Fission Theories \& Models

Time-Dependent Microscopic Approaches

From ascr-discovery.science.doe.gov Credit: A. Staszczak et al., ORNL

W.Younes, FIESTA school, Sep. 8-9, 2014, Santa Fe

N.Dubray, FIESTA workshop, Sep. 10-12, 2014, Santa Fe

Modern Fission Theories \& Models

Dynamics in the macro-micro theory

Modern Fission Theories \& Models

Dynamics in the macro-micro theory

J. Randrup \& P. Möller, Phys. Rev. C 88, 064606 (2013)

Data from K.H.Schmidt et al., Nucl. Phys. A 665, 221 (2000)

Modern Fission Theories \& Models
 Dynamics in the macro-micro theory

A.J.Sierk, FIESTA workshop, Sep. 10-12, 2014, Santa Fe

Modern Fission Theories \& Models
 Dynamics in the macro-micro theory

J. Randrup \& P. Möller, Phys. Rev. C 88, 064606 (2013)

Data from K.H.Schmidt et al., Nucl. Phys. A 665, 221 (2000)

A.J.Sierk, FIESTA workshop, Sep. 10-12, 2014, Santa Fe

Uncertainties \& Errors...

- Macro-micro fundamental assumptions
- Inertia tensor
- Temperature
- Sub-barrier fission

Modern Fission Theories \& Models

Prompt neutrons and photons

Monte Carlo codes to follow the de-excitation of fission fragments: CGM/F, FREYA, FIFRELIN, GEF, ...

Uncertainties \& Errors...

- Nuclear structure data
- OMP for neutron-rich nuclei
- Excitation sorting mechanisms at scission

Modern Fission Theories \& Models
Fission Cross Sections

Modern Fission Theories Fission Cross Sections

- Modern Theory of Fission Cross Section
- Numerical integration of V(fission path)

- Inertia tensor along the path
- Coupling between Class-I and Class-II states
- Class-III states
- Fission transition states
- Level densities
- Different fission paths/modes?
- Microscopic input?

Goriely, Hilaire, Koning, Sin, Capote
PRC 79, 024612 (2009)

Bouland, Lynn, Talou
PRC 88, 054612 (2013)

Modern Fission Theories

 Fission Cross Sections- Modern Theory of Fission Cross Section
- Numerical integration of V (fission path)

- Inertia tensor along the path
- Coupling between Class-I and Class-II states
- Class-III states
- Fission transition states
- Level densities
- Different fission paths/modes?
- Microscopic input?

Goriely, Hilaire, Koning, Sin, Capote
PRC 79, 024612 (2009)

Bouland, Lynn, Talou
PRC 88, 054612 (2013)

Uncertainties \& Errors...

- Many adjustable parameters
- Can be reduced but not eliminated
- Need for correlated data

Correlated Fission Data

Two examples (among many)

Correlated Fission Data

Two examples (among many)

Fission cross sections \& Fission fragment angular distributions

Correlated Fission Data

Two examples (among many)

Fission cross sections \& Fission fragment angular distributions

Correlated Fission Data

Two examples (among many)

Fission cross sections \& Fission fragment angular distributions

- Simultaneous measurements of $\sigma_{f}\left(E_{n}\right)$ and $d Y_{F F} / d \Omega$
- Work at LANSCE w/TPC and CERN n_TOF

Correlated Fission Data

Two examples (among many)

Fission cross sections \& Fission fragment angular distributions
$<v_{\mathrm{p}}>$ and $<\mathrm{E}_{\gamma}{ }^{\text {tot }}>$ fluctuations in resonance region

- Simultaneous measurements of $\sigma_{f}\left(E_{n}\right)$ and $d Y_{F F} / d \Omega$
- Work at LANSCE w/TPC and CERN n_TOF

Correlated Fission Data

Two examples (among many)

Fission cross sections \& Fission fragment angular distributions

- $<\nu_{\mathrm{p}}>$ and $<\mathrm{E}_{\gamma}^{\text {tot }}>$ fluctuations in resonance region

- Simultaneous measurements of $\sigma_{f}\left(E_{n}\right)$ and $d Y_{F F} / d \Omega$
- Work at LANSCE w/TPC and CERN n_TOF

Correlated Fission Data

Two examples (among many)

Fission cross sections \& Fission fragment angular distributions

- $<\nu_{\mathrm{p}}>$ and $<\mathrm{E}_{\gamma}^{\text {tot }}>$ fluctuations in resonance region

- New DANCE measurement of < $\mathrm{E}_{\gamma}{ }^{\text {tot }}>\left(\mathrm{E}_{\mathrm{n}}\right)$
- Theoretical interpretation based on the ($\mathrm{n}, \mathrm{\gamma f}$) process
- New $<\nu_{p}>\left(E_{n}\right)$ measurements would be welcome!
- Simultaneous measurements of $\sigma_{f}\left(E_{n}\right)$ and $d Y_{F F} / d \Omega$
- Work at LANSCE w/TPC and CERN n_TOF

Reducing Uncertainties

in our Predictions of Fission Observables

Reducing Uncertainties in our Predictions of Fission Observables

- Predictions for related data:

- Fission cross sections across isotopes and incident channels, fission fragment angular distributions, fission modes, etc.
- Prompt fission neutrons: multiplicity, spectrum, n -n correlations in energy and angle, etc., as a function of fragment ($\mathrm{A}, \mathrm{Z}, \mathrm{KE}$)
- Same for prompt fission gamma rays (cf. Oberstedt, Jandel)
- Use of $\langle v\rangle,\left\langle\varepsilon_{n}\right\rangle,\left\langle\nu_{\gamma}\right\rangle,\left\langle\varepsilon_{\gamma}\right\rangle$ as function of (A,Z,KE) to constrain PFNS

Reducing Uncertainties in our Predictions of Fission Observables

- Predictions for related data:

- Fission cross sections across isotopes and incident channels, fission fragment angular distributions, fission modes, etc.
- Prompt fission neutrons: multiplicity, spectrum, n -n correlations in energy and angle, etc., as a function of fragment ($\mathrm{A}, \mathrm{Z}, \mathrm{KE}$)
- Same for prompt fission gamma rays (cf. Oberstedt, Jandel)
- Use of $\langle v\rangle,\left\langle\varepsilon_{n}\right\rangle,\left\langle\nu_{\gamma}\right\rangle,\left\langle\varepsilon_{\gamma}\right\rangle$ as function of (A,Z,KE) to constrain PFNS

One consistent fission model for related data sets

Reducing Uncertainties in our Predictions of Fission Observables

- Predictions for related data:

- Fission cross sections across isotopes and incident channels, fission fragment angular distributions, fission modes, etc.
- Prompt fission neutrons: multiplicity, spectrum, n-n correlations in energy and angle, etc., as a function of fragment ($\mathrm{A}, \mathrm{Z}, \mathrm{KE}$)
- Same for prompt fission gamma rays (cf. Oberstedt, Jandel)
- Use of $\langle v\rangle,\left\langle\varepsilon_{n}\right\rangle,\left\langle v_{\gamma}\right\rangle,\left\langle\varepsilon_{\gamma}\right\rangle$ as function of (A,Z,KE) to constrain PFNS

One consistent fission model for related data sets
Renewed need for original, exclusive, and accurate fission data - beware of old measurements \& systematic biases (Haight)

Reducing Uncertainties in our Predictions of Fission Observables

- Predictions for related data:

- Fission cross sections across isotopes and incident channels, fission fragment angular distributions, fission modes, etc.
- Prompt fission neutrons: multiplicity, spectrum, n -n correlations in energy and angle, etc., as a function of fragment ($\mathrm{A}, \mathrm{Z}, \mathrm{KE}$)
- Same for prompt fission gamma rays (cf. Oberstedt, Jandel)
- Use of $\langle v\rangle,\left\langle\varepsilon_{n}\right\rangle,\left\langle v_{\gamma}\right\rangle,\left\langle\varepsilon_{\gamma}\right\rangle$ as function of (A,Z,KE) to constrain PFNS

One consistent fission model for related data sets
Renewed need for original, exclusive, and accurate fission data - beware of old measurements \& systematic biases (Haight)

Proper propagation of uncertainties from both experiments and models (de Saint-Jean, Rochman)

Reducing Uncertainties in our Predictions of Fission Observables

- Predictions for related data:

- Fission cross sections across isotopes and incident channels, fission fragment angular distributions, fission modes, etc.
- Prompt fission neutrons: multiplicity, spectrum, n-n correlations in energy and angle, etc., as a function of fragment ($\mathrm{A}, \mathrm{Z}, \mathrm{KE}$)
- Same for prompt fission gamma rays (cf. Oberstedt, Jandel)
- Use of $\langle v\rangle,\left\langle\varepsilon_{n}\right\rangle,\left\langle v_{\gamma}\right\rangle,\left\langle\varepsilon_{\gamma}\right\rangle$ as function of (A,Z,KE) to constrain PFNS
- One consistent fission model for related data sets
- Renewed need for original, exclusive, and accurate fission data - beware of old measurements \& systematic biases (Haight)
Proper propagation of uncertainties from both experiments and models (de Saint-Jean, Rochman)
- Evaluated uncertainties can be kept small when nearby data are available adjusted libraries - beware of extrapolations!

The next decade

The next decade

After 75+ years... fission data are still limited in scope (isotopes, energies)

The next decade

After 75+ years... fission data are still limited in scope (isotopes, energies)

Fantastic opportunities in both experimental and theoretical studies of the fission process

The next decade

After 75+ years... fission data are still limited in scope (isotopes, energies)
Fantastic opportunities in both experimental and theoretical studies of the fission process
Will continue to rely on phenomenology to fulfill the needs of applications

The next decade

After 75+ years... fission data are still limited in scope (isotopes, energies)
Fantastic opportunities in both experimental and theoretical studies of the fission process
Will continue to rely on phenomenology to fulfill the needs of applications

- Huge rewards from close collaboration between fundamental fission physics research and application needs

The next decade

After 75+ years... fission data are still limited in scope (isotopes, energies)

- Fantastic opportunities in both experimental and theoretical studies of the fission process
- Will continue to rely on phenomenology to fulfill the needs of applications
- Huge rewards from close collaboration between fundamental fission physics research and application needs

```
"Uncertainties in Nuclear Fission Data,"
P.Talou, T.Kawano, M.B.Chadwick, D.Neudecker, and M.E.Rising
to appear in a Special Issue of J. Phys. G: Nuclear and Particle Physics on
"Enhancing the interaction between nuclear experiment and theory through information and statistics"
```

