
LLNL-PRES-XXXXXX
This work was performed under the auspices of the U.S. Department 
of Energy by Lawrence Livermore National Laboratory under Contract 
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Quantifying Uncertainties in Nuclear Density 
Functional Theory
P(ND)2-2 – Second International Workshop on Perspectives on 
Nuclear Data for the Next Decade

Nicolas Schunck
October 14 – 17, 2014



Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
2

The NUCLEI (Nuclear Computational Low-Energy 
Initiative) SciDAC project builds upon recent 
successes in large-scale computations of atomic 
nuclei to provide results critical to nuclear science 
and nuclear astrophysics, and to nuclear 
applications in energy and national security. 

The NUCLEI SciDAC 3 Collaboration

The U.S. Department of Energy's Scientific 
Discovery through Advanced Computing 
(SciDAC) program was created to bring 
together many of the nation's top 
researchers to develop new computational 
methods for tackling some of the most 
challenging scientific problems 

NUCLEI Mission StatementNUCLEI Mission Statement

SciDAC Mission StatementSciDAC Mission Statement
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The U.S. Department of Energy 
(DOE) Office of Science provides a 
portfolio of national high-
performance computing facilities 
housing some of the world’s most 
advanced supercomputers. These 
leadership computing facilities 
enable world-class research for 
significant advances in science.

The INCITE Program

INCITE Mission StatementINCITE Mission Statement

Types of jobsTypes of jobs

● 4th largest allocation for 2014-2017
● Supports 6 programs solving the 

nuclear many-body problem
● Hybrid MPI/OpenMP model, some 

with GPU, scale up to full machine
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The Nuclear Hierarchy
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mechanics and/or classical physics
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 Hierarchy of degrees of freedom
– Quarks and gluons in relativistic quantum 

field theory
– Structure-less nucleons in non-relativistic 

quantum mechanics 
– Densities of nucleons in quantum 

mechanics and/or classical physics

 The physics of nuclei is based on 
nucleons and densities of nucleons, not 
quarks or gluons

 Nuclear density functional theory (DFT)
– Built on effective nuclear forces between 

protons and neutrons
– Uses densities of nucleons as fundamental 

degrees of freedom
– Relies on symmetry breaking

The Nuclear Hierarchy
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The Realm of Nuclear DFT
DFT is the only microscopic 
theory for heavy nuclei

DFT is the only microscopic 
theory for heavy nuclei
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Nuclear DFT for Dummies
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Nuclear DFT for Dummies
 System of independent particles  uncorrelated wave-function 
 Total energy is a functional of the density of nucleons: energy 

density functional (EDF)
 Cannot build the EDF from realistic nuclear forces: induced many-

body physics cut-off by assumption of independent particles 
– Design and optimize “hand-made” effective nuclear forces 
– Symmetry breaking the key to success

 Compared to direct approaches with realistic potentials, EDFs
– Encode physics beyond independent particle level = the magic of producing 

correlations with independent particles!
– Are phenomenological by construction. Ex.: density dependencies

 Examples: Skyrme (zero-range) and Gogny (finite-range) forces
 Reviews: RMP 75, 121 (2003),  Prog. Part. Nucl. Phys. 64, 120 (2010)

Skyrme: PRC 5, 626 (1972); Gogny: PRC 21, 1568 (1980)
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DFT as a Model
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Numerical errors
arXiv:1406.4383
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PRC 89, 054314 (2014) 

Statistical errors
PRC 89, 054314 (2014) 
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DFT as a Model
 A mathematician view of DFT: given a set of parameters, we 

produce a set of outputs by solving the DFT equations (to 
determine the actual density ρ(r) in the system)

 Sources of uncertainties
– Numerical errors due to implementation of DFT equations on a CPU
– Statistical errors induced by the fit of model parameters on data
– Systematic errors caused by the choice of the functional

Numerical errors
arXiv:1406.4383

Numerical errors
arXiv:1406.4383

Statistical errors
PRC 89, 054314 (2014) 

Statistical errors
PRC 89, 054314 (2014) 

Systematic errors
From PRC 61, 034313 (2000)

Systematic errors
From PRC 61, 034313 (2000)
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Skyrme Energy Density
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Skyrme Energy Density
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Optimization Strategies
 Given the form of the functional, how do we fit model parameters?
 Experimental data

– Find data such that each term in the functional is constrained
– Choose data as model-independent as possible. Ex.: atomic masses
– Avoid evaluated data, stay away from large error bars

 A philosophical choice: A little or a lot of data?
– Mass models (Bruxelles-Montréal)

● Take all available data on masses and fit the parameters
● r.m.s. values: 0.50 MeV (Skyrme), 0.80 MeV (Gogny), 0.57 MeV (FRLDM)
● May introduce uncontrolled bias because too much data hides model limitations

– Not mass models (UNEDF project)
● Choose limited amount of (usually heterogeneous) data
● Predictive power constrained by model limitations
● Choice of data also introduces bias

Skyrme mass model: PRC 62, 024308 (2000), PRC 88, 061302(R) (2014); Gogny mass model: PRL 102, 242501 (2009); 
FRLDM: PRL 108, 052501 (2012), Atom. Data and Nucl. Data Tab. 59, 185 (1995); UNEDF: PRC 82, 024313 (2010), PRC 
85, 024304 (2012), PRC 87, 054314 (2014)
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 Fit at deformed HFB level 
 Composite 2 

 Supplement “best-fit” with full 
covariance and sensitivity analysis

– Provide sensitivity on data points
– Covariance matrix allows uncertainty 

propagation

The UNEDF Protocol

UNEDF0 UNEDF1 UNEDF2

Number of parameters nx 12 12 14

Type of data t Masses, r.m.s. 
radii, OES (T=3)

Masses, r.m.s. radii, 
OES, E* fission isomer 

(T=4)

Masses, r.m.s. radii, OES, 
E* fission isomer, s.p. 

splittings (T=5)

Number of data points nd 
(total)

108 115 130

PRC 82, 024313 (2010), PRC 85, 024304 (2012), PRC 87, 
054314 (2014)
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The UNEDF Family

 UNEDF functionals 
are all-round 
functionals

 Quality degrades 
when more 
constraints added

 Skyrme form too 
limited

MassesMasses Separation energiesSeparation energies

Single-particle statesSingle-particle states Fission barriersFission barriers

Neutron dropletsNeutron droplets
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Covariance Analysis
PRC 87, 034324 (2013)PRC 87, 034324 (2013)

PRC 88, 031305 (2013)PRC 88, 031305 (2013)
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Quantifying the Unknown: Bayesian Inference
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Bivariate posterior distribution for the UNEDF1 
Skyrme functional. arXiv:1407.3017,  arXiv:1406.437 
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 DFT model parameters are treated 
as genuine random variables

 Reflect the fact that DFT is a 
model of a more complex reality

 Bayesian inference techniques 
give access to probability 
distribution of parameters

 The posterior distribution depend 
the metric defined by some χ2 

 Posterior distribution generated 
by Markov-Chain Monte-Carlo 
simulations

 Draw random samples of the 
posterior to propagate errors

Quantifying the Unknown: Bayesian Inference

Bivariate posterior distribution for the UNEDF1 
Skyrme functional. arXiv:1407.3017,  arXiv:1406.437 

Bivariate posterior distribution for the UNEDF1 
Skyrme functional. arXiv:1407.3017,  arXiv:1406.437 

UQ work: ~5 M CPU hoursUQ work: ~5 M CPU hours
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Propagating Uncertainties

Masses of neutron-rich nucleiMasses of neutron-rich nuclei



Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
47

Propagating Uncertainties
 For driplines, statistical errors are 

comparable to systematic errors

Masses of neutron-rich nucleiMasses of neutron-rich nuclei

Closed-shell nuclei

Two-neutron driplinesTwo-neutron driplines



Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
48

Propagating Uncertainties
 For driplines, statistical errors are 

comparable to systematic errors
 Large statistical errors in fission 

barriers translate into orders of 
magnitude uncertainties for half-
lives

Masses of neutron-rich nucleiMasses of neutron-rich nuclei

Closed-shell nuclei

Two-neutron driplinesTwo-neutron driplines

Fission barrier in 240PuFission barrier in 240Pu
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Conclusions
 Density functional theory has entered the era of systematic, large-

scale, quantitative predictions of nuclear properties thanks to the 
advent of leadership class computers

– Global surveys at the scale of the mass table
– Realistic simulations of complex phenomena such as fission

 Quantifying and propagating uncertainties is crucial for applications 
in fundamental symmetries, nuclear astrophysics, and nuclear data 
needs

– Rigorous mathematical tools to estimate statistical uncertainties exist and 
are being deployed on a large scale

– Systematic errors remain significant and must be investigated in more details

 Challenges
– Improve the connection between the EDF and theory of nuclear forces
– Propagate uncertainties in complex problems such as decays, spectroscopy
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