Connecting structure and direct reaction modeling

M. Dupuis, CEA, DAM, DIF, France

Perspective on Nuclear Data for the Next Decade 2 - 14-17/10/2014, CEA-TGCC.

Collaborators

E. Bauge, G. Blanchon, J.-P. Delaroche, G. Haouat, S. Hilaire, F. Lechaftois, S. Péru, N. Pillet, C. Robin, P. Romain, CEA, DAM, DIF, France. T. Kawano, LANL, New Mexico, USA. J. Raynal, CEA Saclay, France. M. Kerveno, P. Dessagne, IPHC, Strasbourg, France. R. Capote, IAEA, Vienna, Austria H. Arellano, University of Chile, Santiago, Chile.

Direct inelastic scattering modeling : phenomenological approach

P. Demetriou et al., Nucl. Phys. A 596, 67 (1996)

- High energy emission :
 - Low energy discrete states excitations : cross sections determined from available measurements (deformation lengths, collective model).
 - Giant resonances : cross sections calculation based on the knowledge of response functions in the continuum which are usually extracted from (e,e'), (h,h'), (h,h'f) measurements or from systematics.
 - Pre-equilibrium emission.
- Depending on the nucleus and the incident energy, the experimental information is not complete and sometimes very scarce: collective response functions for *L* > 3 and in deformed targets such as actinides.

Microscopic model for direct inelastic scattering : spherical targets

Nuclear structure model : Random Phase Approximation ((Q)RPA), D1S interaction Target excitations $|N\rangle = \sum \left(X_{\rho h}^{N} a_{\rho}^{\dagger} a_{h} - Y_{\rho h}^{N} a_{h}^{\dagger} a_{\rho}\right) |\tilde{0}\rangle.$ DWBA calculations : Optical potentials : $U = \langle \tilde{0} | V_{eff} | \tilde{0} \rangle$ $\frac{d\sigma}{d\Omega} \sim \left| \langle \chi^{(-)}, N | V_{eff} | 0, \chi^+ \rangle \right|^2$ Transition potentials : $U_{tr} = \langle N | V_{eff} | \tilde{0} \rangle$

Folding model with $V_{eff}\equiv$ JLM interaction from E. Bauge, J. P. Delaroche, and M. Girod, Phys. Rev. C63, 024607 (2001).

Transition potential

Optical potential: $U = V.\rho$, $\rho = \rho_{IS} = \rho_p + \rho_n$. Transition potential: $U_{tr} = \beta_L \frac{dU}{dR} = \frac{dU}{d\rho} \beta_L \frac{d\rho}{dR}$. Transition density identified to: $\rho_L^{tr}(r) = \beta_L \frac{d\rho}{dR}$.

Rearrangement (Cheon):

$$\begin{array}{l} \mbox{If } V \equiv V(\rho) \Rightarrow \frac{dV(\rho)\rho}{d\rho} = V(\rho) + \rho \frac{dV(\rho)}{d\rho}. \\ \mbox{Regular term: } U_{tr} = V(\rho)\rho_L^{tr}(r) \\ \mbox{Rearrangment term: } U_{tr}^R = \rho \frac{dV(\rho)}{d\rho}\rho_L^{tr}(r) \\ \mbox{See T. Cheon etal., Nucl. Phys. A437, 301 (1985) : } \\ \mbox{done in (p,p') } ^{16}O (N=Z). \end{array}$$

New rearrangement:

 $\begin{array}{l} \text{If } V \equiv V(\rho_{p},\rho_{n}) \equiv V(\rho_{lS},\rho_{lV}), \ \rho_{lV} = \rho_{n} - \rho_{p}. \\ \text{Regular term: } U_{tr} = V(\rho)\rho_{L}^{tr,lS}(r). \\ \text{Rearrangment term 1 (IS): } U_{tr}^{R1} = \rho_{lS}\frac{dV}{d\rho_{lS}}\rho_{L}^{tr,lS}(r). \\ \text{Rearrangment term 2 (IV): } U_{tr}^{R2} = \rho_{lS}\frac{dV}{d\rho_{V}}\rho_{L}^{tr,lV}(r). \end{array}$

KD : collective model with Koning Delaroche potential ($\beta_3 = 0.120$).

Impact of rearrangement :

Impact of rearrangement : (p,p')

Pre-equilibrium reaction mechanism

Doubly differential (n,n') or (p,p') cross sections:

$$\frac{d\sigma(\mathbf{k}_i, \mathbf{k}_f)}{dE_k d\Omega_f} \sim \int dE \sum_N f\left(E_{k_i} - E_k - E_N\right) |T_{ff}|^2$$

Transition amplitude (Born Series) :

$$T_{\text{fi}} = \langle \chi_{\text{f}}^{(-)}(\mathbf{k}), N | V_{\text{eff}} + V_{\text{eff}} \frac{1}{E - H_0 + i\varepsilon} V_{\text{eff}} + V_{\text{eff}} \frac{1}{E - H_0 + i\varepsilon} V_{\text{eff}} \frac{1}{E - H_0 + i\varepsilon} V_{\text{eff}} + \cdots | \chi_{i}^{(+)}(\mathbf{k}_{i}), 0 \rangle$$

 $f(E_{k_i} - E_k - E_N)$: spreading functions (damping+escape widths).

ued

Pre-equilibrium reaction mechanism

Energie incidente < 20 MeV

Doubly differential cross section (n,n')/(p,p')

Usually at E<20 MeV : reduced to one-step direct process \equiv sum of DWBA cross sections.

$$\frac{d\sigma(\mathbf{k}_{i},\mathbf{k}_{f})}{dEd\Omega_{f}} \sim \int dE \sum_{N} f\left(E_{k_{i}} - E_{k} - E_{\rho h_{N}}\right) \left| \langle \chi_{f}^{(+)}(\mathbf{k}), N | V_{eff} | \chi_{i}^{(-)}(\mathbf{k}_{i}), 0 \rangle \right|^{2}$$

Microscopic model for direct inelastic scattering off axially deformed targets

- Calculation with p-h excitations : Interaction fit to match (n,xn) data. ⇒ underestimates high energy emission [T. Kawano et al., Phys.Rev. C63, 034601 (2001)].
- Collective (vibrations) states in actinides (low energy and giant resonances) : not well characterized in experiments, usually not included in reactions modeling.
- Temporary solution used in evaluations : pseudo states = collective states with properties (energy and deformation length) adjusted to fit the observed high energy neutron emission (used in ENDF-BVII, BRC).

QRPA model that describes collective excitations in axially deformed nuclei has been recently develloped in Bruyres and used to describe the excitations spectra in actinides : *S.Peru, G.Gosselin, M.Martini, M.Dupuis, S.Hilaire, J.-C.Devaux, Phys.Rev.C* 83, 014314 (2011)

Excitation spectrum of a nucleus with a static axial deformation

- QRPA method : axial deformation, projection K of the total angular momentum on the symmetry axis is a good quantum number, parity is conserved.
- Target excitations in the intrinsic frame : one phonon excitations.

$$|\alpha K\Pi\rangle = \Theta^{+}_{\alpha K\Pi} |\tilde{0}_{l}\rangle = \frac{1}{2} \sum_{ij \in (K\Pi)} \left(X_{ij}^{\alpha K\Pi} \eta^{+}_{i\rho_{i}\Omega_{l}} \eta^{+}_{j\rho_{j}\Omega_{j}} - (-)^{K} Y_{ij}^{\alpha K\Pi} \eta_{i\rho_{l}-\Omega_{l}} \eta_{j\rho_{j}-\Omega_{j}} \right) |\tilde{0}_{l}\rangle$$

Target states in the laboratory frame : projection on total angular momentum → rotational band for each intrinsic excitation, with angular momenta J ≥ K

$$|\alpha JMK\Pi\rangle = \sqrt{\frac{2J+1}{16\pi^2}} \int d\Omega \mathscr{D}_{MK}^{J^*}(\Omega) R(\Omega) |\alpha K\Pi\rangle + (-)^{J+K} \mathscr{D}_{M-K}^{J^*}(\Omega) R(\Omega) |\alpha \bar{K}\Pi\rangle$$

$$\stackrel{I}{=} \underbrace{J^{I} \equiv (K+3)^n}_{J^{I} \equiv (K+3)^n} \xrightarrow{J^{I} \equiv (K+3)^n}_{IJ \equiv (K+2)^n} \xrightarrow{J^{I} \equiv (K+2)^n}_{IJ \equiv (K+2)^n} \xrightarrow{J^{I} \equiv (K+3)^n}_{IJ \equiv (K+3)^n} \xrightarrow{J^{I} \equiv (K+3)^n}_{IJ \equiv K^n}$$

Doubly differential cross section :

$$\frac{d\sigma(\mathbf{k}_i, \mathbf{k}_f)}{dE d\Omega_f} \sim \int dE \sum_N f\left(E_{k_i} - E_k - E_N\right) \frac{d\sigma_N(\mathbf{k}_i, \mathbf{k})}{d\Omega}$$

• Sum over target excitations :
$$\sum_{N} = \sum_{K^{\Pi}} \sum_{J \geq K}$$

 \rightarrow ${\cal K}^{\Pi}$ intrinsic excitations, $J \geq {\cal K}$ rotational band states,

• For one excitation : $\frac{d\sigma_N(\mathbf{k}_i, \mathbf{k})}{d\Omega}$

 \rightarrow need coupling potential $U_L(r) = \int V_L(r,r') \rho_L^{QRPA}(r') r'^2 dr'$ (JLM folding model).

• $\rho_L(r)$: multipole of order *L* of the **QRPA** radial transition density between the GS and an intrinsic excitation.

QRPA response functions in ²³⁸U

Reduce transition probabilities (proton+neutron) $B(EJ) \sim |\int \rho_J^{\tilde{0}_{J},\alpha K\Pi}(r)r^{J+2}dr|^2$ (L>2) : provide a measure of excitations collectivity (cross sections magnitude approximately proportional to B(EJ))

Large number of collective excitations at low energy

Analysis of 11-18 MeV (n,xn) ²³⁸U spectra

Comparison to previous more phenomenological calculations

Microscopic model with QRPA :

- High energy cross section ($E_f > 10$ MeV): rather good.
- Clearly underestimated at $E_f \simeq 6-10$ MeV
 - \implies TUL calculations in EMPIRE: fit the (n,×n) data well.
 - \Longrightarrow What is missing ?

Non-natural parity excitations

- Contribution of non-natural partity (n.n.p.) excitations (π = (−)^{L+1}): up to 20% of the emission cross section.
- Transition not-possible within the JLM convolution model ($\Delta S = 1$).
- Adjust a new interaction for folding models with missing terms (start from gmatrix or effective interaction from Nuclear Structure approach).
- Low cost-short term solution : level densities folded with averaged cross-sections.

Two-steps process

Second order transition amplitude to two-bosons states:

$$T_{fi} = T_{fi}^{(1)} + \langle \chi_f^{(-)}(\mathbf{k}), N_1, N_2 | V_{eff} \frac{1}{E - H_0 + i\varepsilon} V_{eff} | \chi_i^{(+)}(\mathbf{k}_i), 0 \rangle$$

 $|\textit{N}_1,\textit{N}_2\rangle = \Theta^+_{\textit{N}_1}\Theta^+_{\textit{N}_2}|\tilde{0}\rangle$: two bosons state. Two-step: already included in TUL-EMPIRE model \Longrightarrow need to carefully compare the components of the two models

Perspective : two-step process

14.1 MeV ²⁰⁸Pb (n,xn)

Reaction mechanisms for $(n,n'\gamma)$

Residual nucleus spin distribution in ²³⁸U

- Direct inelastic scattering ²³⁸U (n,n') : \rightarrow hypothesis : equilibration to a compound nucleus with excitation energy E, spin-parity J, Π .
- Spin distribution :

Exciton model used in TALYS (for E < 20 MeV): $R(J) = \frac{(2J+1)^2}{2\sqrt{2\pi\sigma^3}} e^{-(J+\frac{1}{2})^2} \sigma = 0.72A^{\frac{2}{3}}$ Results form QRPA inelastic scattering model : $R(J, E_{in}) = \frac{\sigma_J(E_{in})}{\sum_J \sigma_J(E_{in})}$, $\sigma_J(E_{in})$: cross section summed over all states of spin J.

238 U (n,n' γ) cross sections for transitions in the GS rotational band

- Exp. data: similar (n,2n) slope for ²³⁸U and ²⁴¹Am.
- Microscopic calculation of direct inelastic scattering: does not change ²³⁸U (n,2n) slope.
- Perspectives :
- \rightarrow Same calculation in progress for ^{239}Pu , but \ldots
- \rightarrow ... we expect similar results that in ^{238}U :
- \implies could other reaction mecanisms explain the (n,2n) slope in ²³⁹Pu ?
- \implies New (n,2n) data interpretation in ²³⁹Pu ?

Light targets : multiparticle-multihole (mpmh) configurations method

Nuclear excitations : sum of 0p0h,1p1h, 2p2h ... mpmh type excitations on a correlated GS. Nuclear structure observables : first results in limited configurations space (sd-shell)

Nucleon induced reactions : DWBA calculations with mpmh wave-functions \Longrightarrow complementary test of nuclear sturcture.

Refs.: J. LeBloas et al. Phys.Rev.C 89, 11306 (2014), N. Pillet et al. Phys.Rev.C 85, 44315 (2012), C. Robin : PhD manuscript (2014)

Mpmh worker : N. Pillet, C. Robin, D. Peña, J. Lebloas

 (p,p') cross-section display the same behavior as for (e,e').

 Calculation in larger space (not limited to sd-shell) and a new effective interaction (extended Gogny force : tensor, finite range everywhere)

 \implies expected reliable nuclear struture input for direct reaction models for nucleon scattering on light nuclei (ex : ¹⁶O).

Microscopic models for nucleon inelastic scattering off spherical or axially deformed nuclei

- One phonon excitations predicted form (Q)RPA calculation (D1S interaction).
- Observed high energy neutron emission is well reproduced (pour E_{in} <20 MeV). \rightarrow QRPA low energy collective states explain the pseudo states origin.
- No arbitrary distinction between direct inelastic scattering and pre-equilibrium emission.
- Improve the description of ${}^{238}U(n,n'\gamma)$ reactions for ${}^{238}U$.
- Discrepancy between predictions and data at lower emission energy in ²³⁸U and ²³²Th : highlight the needs to introduce other reaction mechanisms such as two-step process.

In progress

- Analysis of (n,xn) and (n,xnγ) to ²³²Th, ²³⁹Pu et ²⁴¹Am (weak coupling approximation for odd nuclei).
- ²³⁹Pu (n,2n) cross section extracted from (n,2nγ) data : new analysis with microscopic direct reaction modeling.
- Comparison of QRPA response functions used in the TUL model and the present model (R. Capote).

Future work

Non natural parity excitations for axially deformed targets: enlight the need of a better effective interaction at low energy.

• Fit new effective interaction to low energy from g-matrix, problem of non-locality.

Calculation of second order with two phonons excitations.

- Millions of transition to consider : approximations needed.
- Use D1S-QRPA response functions in TUL-like model.
- Fit deformation parameters from collective model analysis, use them in the secon order calculation.

Whithin ten years ...

- Coupled channel calculations with QRPA transition densities including interband coupling.
- Extension of RPA-OMP (G. Blanchon) to direct inelastic scattering.
- Coupled channel with non-local potentials : mandatory if we want to use fully microscopic potentials.
- Use of mpmh wave functions for reactions on light nuclei.
- Introduce progresses in microscopic nuclear reaction models in global nuclear reaction codes (TALYS, EMPIRE ...) to improve (step by step) nuclear data evaluation.

THANK YOU

FOR YOUR ATTENTION

Collaborators

E. Bauge, G. Blanchon, J.-P. Delaroche, G. Haouat, S. Hilaire, F. Lechaftois, S. Péru, N. Pillet, C. Robin, P. Romain, CEA, DAM, DIF, France. T. Kawano, LANL, New Mexico, USA. J. Raynal, CEA Saclay, France. M. Kerveno, P. Dessagne, IPHC, Strasbourg, France. R. Capote, IAEA, Vienna, Austria H. Arellano, University of Chile, Santiago, Chile.

