P(ND)²-2 Second International Workshop on Perspectives on Nuclear Data for the Next Decade

14–17 October 2014 — Bruyères-le-Châtel, France Modelling odd-even staggering in fission fragment yields in the Brownian shape-motion approach: Current results and prospects

Peter Möller

Theoretical Divison, Los Alamos National Laboratory

Collaborators on this and other projects:

W. D. Myers, J. Randrup(LBL), H. Sagawa (Aizu), S. Yoshida (Hosei), T. Ichikawa(YITP), A. J. Sierk(LANL), A. Iwamoto (JAEA),
S. Aberg (Lund), R. Bengtsson (Lund), S. Gupta (IIT, Ropar), and many experimental groups (e. g. K.-L. Kratz (Mainz), H. Schatz (MSU), A. Andreyev (York), K. Nishio (JAEA) ...).

More details about fission (PRC 79 064304, PRC 84 034613, PRC 88 064606), other projects (beta-decay,masses), associated ASCII data files, interactive access to data (type in Z, A and get specific data, contour maps) and figures are at

http://t2.lanl.gov/nis/molleretal/

Potential Energy of Deformation

We use the macroscopic-microscopic method introduced by Swiatecki and Strutinsky:

$$E_{\rm pot}({\rm shape}) = E_{\rm macr}({\rm shape}) + E_{\rm micr}({\rm shape})$$
 (1)

The macroscopic term is calculated in a liquid-drop type model (for a specific deformed shape).

The microscopic correction is determined in the following steps

- 1. A shape is prescribed
- A single-particle potential with this shape is generated.
 A spin-orbit term is included.
- The Schrödinger equation is solved for this deformed potential and single-particle levels and wave-functions are obtained
- The shell correction is calculated by use of Strutinsky's method.
- The pairing correction is calculated in the BCS or Lipkin-Nogami method.

In fission, what are the shapes and related energies involved in the transition from a single ground-state shape to two separated fission fragments?

Brownian shape motion

Nuclear deformation energy: $E_{def}(i,j,k,l,m)$

Bias potential: $V_{\text{bias}}(i) = V_0 (Q_0/Q_2)^2$

Level density parameter: $a_A = A/(8 \text{ MeV})$

Temperature *T*: $E^* - E_{def} = a_A T^2$

 $= V(\chi) = E_{def} + V_{bias}$

P. Möller et al, Nature 409 (2001) 785

Metropolis walk:

N. Metropolis *et al*, J Chem Phys 26 (1953) 1087 $V(\chi') < V(\chi): move with P = 1$ $V(\chi') > V(\chi): move with P = exp(-\Delta V/T)$

Scission: Critical neck radius $c_0 \approx 2.5$ fm

Change shape: $\chi \rightarrow \chi'$?

Contrasting Fission Potential-Energy Surfaces Hg↔U

Compound		Calc.	Exp.	Calc	Exp.	Calc.
Z	A	A_{L}/A_{H}	A_{L}/A_{H}	Z_{L}/Z_{H}	Z_{L}/Z_{H}	$\epsilon_{L}/\epsilon_{H}$
80	180	80/100	80/100	36/44		0.60/0.50
90	222	108/114		44/46	44/46	0.55/0.55
90	228	112/116	89/139	44/46	36/54	0.55/0.55
92	234	116/118	95/139	46/46	38/54	0.55/0.55
94	240	110/130	102/140	44/50	41/53	0.55/0.65
98	252	112/140	108/144	44/54		0.55/0.75
100	252	110/142	110/142	44/56		0.55/0.75
100	258	118/140	129/129	46/54		0.55/0.75
100	260	118/142	130/130	46/54		0.55/0.65
100	264	132/132	132/132	50/50	50/50	0.65/0.65

Modeling in BSM of $Y(Z_1, N_1, Z - Z_1, N - N_1)$

We need total potential energy versus fragment proton and neutron numbers. Shell correction is actually straightforward.

Total shell correction:

 $ESH_{Z+N}(Z_1, N_1, Z - Z_1, N - N_1)$

"Field" asymmetry $\alpha_g \rightarrow$ Asymmetry in N and Z! This means 2 asymmetry coordinates rather than a single "field" asymmetry. How?

Calculate neutron shell correction for grid of α_g corresponding to integer N values. Save the *neutron* shell corrections $ESH_N(N_1, N - N_1)$.

Calculate proton shell correction for grid of α_g corresponding to integer *Z* values. Save the *proton* shell corrections $ESH_Z(Z_1, Z - Z_1)$.

 $ESH_{Z+N}(Z_1, N_1, Z - Z_1, N - N_1) = \\ ESH_Z(Z_1, Z - Z_1) + ESH_N(N_1, N - N_1)$

Modeling in BSM of $Y(Z_1, N_1, Z - Z_1, N - N_1)$

We need total potential energy versus fragment proton and neutron numbers. Now what about the **Macroscopic energy:**

 $EMAC_{Z+N}(Z_1, N_1, Z - Z_1, N - N_1)$ Start by calculating $EMAC_{comp}$ for the compound nucleus for a grid in α_g corresponding to integer Z_1 and $Z - Z_1$.

The neutron numbers in the fragments corresponding to the α_g yielding these integer Z_1 are not integers.

Now fix Z_1 and calculate the macroscopic energy for this (fixed) Z_1 but for different integer N_{ν} as the sum $EMAC_{Z+N}(Z_1, N_{\nu}, Z - Z_1, N - N_{\nu}) =$ $EMAC_{comp} + \Delta EMAC$

To obtain the second term calculate the sum of the macroscopic energies for the separated fragments: $EMAC(Z_1, N_{\nu}) + EMAC(Z - Z_1, N - N_{\nu})$ where Z_1 is fixed, N_{ν} varies. $\Delta EMAC$ for various N_{ν} (Z_1 is still fixed) is the difference between this function at N_{ν} and at the noninteger N corresponding to the chosen Z_1 .

FRAGMENT MACROSCOPIC ENERGIES AND THE SUMS

Z1	N1	Ef1	Z2	N2	Ef1	Ef1+Ef2
ΕÛ	06	15 00	4.0	10	01 062	100 750
22	90	-15.90	40	40	-04.003	-100.759
52	94	-26.21	40	50	-87.564	-113.770
52	92	-35.87	40	52	-88.817	-124.691
52	90	-44.88	40	54	-88.701	-133.576
52	88	-53.18	40	56	-87.292	-140.473
52	86	-60.77	40	58	-84.659	-145.427
52	84	-67.60	40	60	-80.865	-148.469
52	82	-73.66	40	62	-75.973	-149.635C
52	80	-78.91	40	64	-70.036	-148.945
52	78	-83.31	40	66	-63.108	-146.419
52	76	-86.83	40	68	-55.237	-142.071
52	74	-89.44	40	70	-46.470	-135.910
52	72	-91.09	40	72	-36.849	-127.938
52	70	-91.74	40	74	-26.413	-118.154
52	68	-91.35	40	76	-15.202	-106.552
52	66	-89.87	40	78	-3.250	-93.122

```
READ(LU,'(2f10.3)') r,rw
idiv =(N+1)/2
if(N+1 .eq. 2*idiv) r = r + (rw-1 +0.01)*2*1.0
E(I,J,K,L,N) = r
```


METROPOLIS

The simplicity of the algorithm nobly stands aside the complexity of the problems it successfully treats.

METROPOLIS

The simplicity of the algorithm nobly stands aside the complexity of the problems it successfully treats.

METROPOLIS

The simplicity of the algorithm nobly stands aside the complexity of the problems it successfully treats.