Mass determinations for nuclear and astrophysics

David Lunney - CSNSM (IN2P3/CNRS) - Université de Paris Sud - Orsay

Mass determinations for nuclear and astrophysics

David Lunney - CSNSM (IN2P3/CNRS) - Université de Paris Sud - Orsay

100 years ago: The birth of mass spectrometry (and nuclear astrophysics!)

J.J. Thomson (1913): isotopes ^{20,22}Ne

100 years ago: The birth of mass spectrometry (and nuclear astrophysics!)

J.J. Thomson (1913): isotopes ^{20,22}Ne

F.W.Aston (~1920's): 212 isotopes & the packing fraction

 $E = mc^2$

100 years ago: The birth of mass spectrometry (and nuclear astrophysics!)

J.J. Thomson (1913): isotopes ^{20,22}Ne

F.W.Aston (~1920's): 212 isotopes & the packing fraction

A. Eddington (~1920) Stellar combustion

 $E = mc^2$

nuclear structure from the mass surface

S. Hilaire & M. Girod (D1S-Gogny/AMADEE)

See also:

"The limits of the Nuclear Landscape"

J. Erler et al., Nature (2012)

Ζ

Masses: a global market

dedicated experimental programs

Masses: a global market

dedicated experimental programs

Masses: a global market

dedicated experimental programs

Indirect (energy)

 $\frac{\text{reactions:}}{A(a,b)B}$ $Q = M_A + M_a - M_b - M_B$ $\frac{\text{decays:}}{A \to B + \alpha}$ $Q_\alpha = M_B - M_A$

'the best of both worlds'

ESR @ GSI-Darmstadt:

CSR @ IMP-Lanzhou:

year	article	physics	nuclides
2011	X.L. Tu et al., Phys. Rev. Lett. 106	<i>rp</i> process	63Ge, 65As, 67Se, 71Kr
2012	Y.H. Zhang et al., Phys. Rev. Lett. 109	IMME	41Ti, 49Fe, 53Ni
2013	X.L. Yan et al. Astrophys. J. Lett. 766	X-ray bursts	43V, 45Cr, 47Mn, 49Fe, 55Cu
2014	P. Shuai et al. arXiv:1404.1187	structure	51Co

THE ASTROPHYSICAL JOURNAL LETTERS, 766:L8 (4pp), 2013 March 20

Penning Trap

 $\omega_c = qB/m$

Penning Trap

 $\omega_c = \omega_+ + \omega_-$

in a quadrupole field

(CERN)

SHIPTRAD

JYFLTRAP (IGISOL)

MLLTRAP (SPIRAL2)

INDIA

CEAN

(CERN)

IRAN

SHIPTRAP (GSI)

TRIGATRAP @ IKC-Mainz (TRIGA reactor)

<u>year</u>	article	physics	nuclides
2011	J. Ketalaer et al. PRC 84	mass surface	153Eu; 152-160Gd;
			175,176Lu; 176-180Hf
2012	Ch. Smorra et al. PRC 85	0v2B/neutrino	106,108,110Pd/Cd
2012	Ch. Smorra et al. PRC 86	0v2EC/neutrino	184Os; 184W

TRIGATRAP @ IKC-Mainz (TRIGA reactor)

<u>year</u>	article	physics	nuclides
2011	J. Ketalaer et al. PRC 84	mass surface	153Eu; 152-160Gd; 175,176Lu; 176-180Hf
2012	Ch. Smorra et al. PRC 85	0v2B/neutrino	106,108,110Pd/Cd
2012	Ch. Smorra et al. PRC 86	0v2EC/neutrino	184Os; 184W

CPT @ Argonne National Lab

year	article	physics	nuclides
2011	J. Fallis et al. PRC 84, 045807	rp process	90Mo; 90Tc; 90Ru; 92Rh
2012	J. Van Shelt et al. PRC 85, 045805	r process	Z=51-55; 59-64; 141-142Cs
2013	J. Van Schelt et al. PRL 111, 061102	r process	N = 82; Z = 49-55

Physics Viewpoint

CPT @ Argonne National Lab

year	article	physics	nuclides
2011	J. Fallis et al. PRC 84, 045807	rp process	90Mo; 90Tc; 90Ru; 92Rh
2012	J. Van Shelt et al. PRC 85, 045805	r process	Z=51-55; 59-64; 141-142Cs
2013	J. Van Schelt et al. PRL 111, 061102	r process	N = 82; Z = 49-55

CPT @ Argonne National Lab

JYFLTRAP @ IGISOL-Jyvaskyla

year	article	physics	nuclides
2011	J. Souin et al., Eur. Phys. J. A 47	weak interaction	30S
2011	J. Hakala et al., Eur. Phys. J. A 47	structure	103Y,108Nb,111Mo, 114Tc
			116Ru, 119Rh, 121,122Pd
2012	J. Hakala et al., Phys. Rev. Lett. 109	structure	128Cd,131In,135Sn,
			136Sb, 140Te
2013	A. Kankainen et al., Phys. Rev. C 87	isomers	121,123,125Cd, 133Te,
			129,131In, 130Sn, 134Sb
2014	A. Kankainen et al., arXiv:1403.4073	structure	Q(49Mn-49Cr); (45V-45Ti)

JYFLTRAP @ IGISOL-Jyvaskyla

LEBIT @ NSCL-MSU (ions trapped after fragmentation):

<u>year</u>	article	physics	nuclides
2012	M. Redshaw et al., Phys. Rev. C 86 0v2B-	neutrino	48Ca
2013	D.L. Lincoln et al., Phys. Rev. Lett. 110	neutrino	82Se
2013	S. Bustabad et al., Phys. Rev. C 88	resonant 2EC	78Kr/78Se
2013	S. Bustabad et al., Phys. Rev. C 88	0v2B-neutrino	48Ca/48Ti

SHIPTRAP @ GSI-Darmstadt:

year	article	physics	nuclides
2011	S. Eliseev et al., PRC 83, 038501	neutrino physics	96Ru, 162Er, 168Yb
2011	S. Eliseev et al., PRL 106, 052504	neutrino physics	152Gd
2012	D. Nesterenko et al., PRC 86, 044313	0v2B; 0v2EC	A = 124, 130, 136
2012	Ch. Droese et al., Nucl. Phys. A 875, 1	0v2EC	180W-180Hf
2012	E. Minaya Ramirez et al. Science	structure	252-255No, 255-256Lr
2013	Ch. Droese et al. EPJA 49, 13	structure	203-207Rn; 213Ra

SHIPTRAP @ GSI-Darmstadt:

year	article	physics	nuclides
2011	S. Eliseev et al., PRC 83, 038501	neutrino physics	96Ru, 162Er, 168Yb
2011	S. Eliseev et al., PRL 106, 052504	neutrino physics	152Gd
2012	D. Nesterenko et al., PRC 86, 044313	0v2B; 0v2EC	A = 124, 130, 136
2012	Ch. Droese et al., Nucl. Phys. A 875, 1	0v2EC	180W-180Hf
2012	E. Minaya Ramirez et al. Science	structure	252-255No, 255-256Lr
2013	Ch. Droese et al. EPJA 49, 13	structure	203-207Rn; 213Ra

Direct Mapping of Nuclear Shell Effects in the Heaviest Elements

E. Minaya Ramirez, ^{1,2} D. Ackermann, ² K. Blaum, ^{3,4} M. Block, ^{2*} C. Droese, ⁵ Ch. E. Düllmann, ^{6,2,1}

SHIPTRAP @ GSI-Darmstadt:

year	article				p	hysics		nuclides	
2011 2011 2012 2012 2012 2012 2013	S. Eliseev et a S. Eliseev et a D. Nesterent Ch. Droese e E. Minaya Ra Ch. Droese e	al., PRC 8 al., PRL 10 to et al., 1 t al., Nuc mirez et t al. EPJA	3, 038501 06, 052504 PRC 86, 04 I. Phys. A 8 al. Science 49, 13	4313 75, 1	n C C s s	eutrino eutrino v2B; Ov v2EC tructure tructure	physics physics 2EC	96Ru, 162Er, 168Yb 152Gd A = 124, 130, 136 180W-180Hf 252-255No, 255-256Lr 203-207Rn; 213Ra	
103 Lr,	D-UDSODA Lawrencium	100 98 96 94 (m) Hilli bo onu iumo 88 88 88 76 74 74 74 -12	-10 -8 -6 -4 -2 0 Frequency	255 Lr ²⁺ V _c = 840025.52(28) Hi 2 4 6 8 1 V _V -v _c (Hz)	lber	Dire Effect E. Minaya 120	ct Mappin cts in the Ramirez, ^{1,2} D. Ackerman	ng of Nuclear Shel Heaviest Elements an, ² K. Blaum, ^{3,4} M. Block, ^{2*} C. Droese, ⁵ Ch. E.	Düllmann, ^{6,2,7}
					Proton nun H OLT B S C B S C	110 108 103 102 100	152	162	Shell correction energies (MeV) 7-1-8-8-8-8-8-8-8-1-1-1-1-1-1-1-1-1-1-1-
www.scie	encemag.org S	CIENCE	VOL 337	7 SEPTE			N	eutron number	

www.sciencemag.org SCIENCE VOL 337 / SEPTE

TITAN @ TRIUMF-ISAC:

year	article	physics	nuclides
2011 2012 2012 2012 2012 2012 2012	S. Ettenauer et al. PRL 107, 272501 A. Lapierre et al. PRC 85, 024317 M. Brodeur et al. PRL 108, 052504 M. Brodeur et al. PRL 108, 212501 A. Gallant et al. PRC 85, 044311 V. Simon et al., PRC 85, 064308	CVC structure (N=28) structure (halos) IMME structure r process	74-76Rb, 74Ga (8+ state) 44-50K; 49-50Ca 8He; 6He 9Li; 9Be 78mRb (8+) 94.97.98Rb, 94.97-99Sr
	EBIT charge breeder RFQ cooler and buncher	trap	

TITAN @ TRIUMF-ISAC:

year	article	physics	nuclides
2012	A. Gallant et al. PRL 109, 032506	structure/theory	51K, 51-52Ca
2013	A. Kwiatkowski et al. Ann. Phys.	CVC	10C; 10B
2013	A. Chaudhuri et al. PRC 88, 054317	structure (N=20)	29-31Na; 30-34Mg
2013	D. Frekers et al. Phys. Lett. B 722	EC/neutrino	71Ga; 71Ge (21+ states)
2014	T. Macdonald et al. PRC 89, 044318	EC/neutrino	51Cr; 51V (6+ states)
2014	A. Kwiatkowski et al. PRC 89, 045502	0v2B/neutrino	48Ca; 48Ti
2014	A. Kwiatkowski et al. PRL (submitted)	structure (N=20)	27-34AI

TITAN @ TRIUMF-ISAC:

year	article	physics	nuclides
2012	A. Gallant et al. PRL 109, 032506	structure/theory	51K, 51-52Ca
2013	A. Kwiatkowski et al. Ann. Phys.	CVC	10C; 10B
2013	A. Chaudhuri et al. PRC 88, 054317	structure (N=20)	29-31Na; 30-34Mg
2013	D. Frekers et al. Phys. Lett. B 722	EC/neutrino	71Ga; 71Ge (21+ states)
2014	T. Macdonald et al. PRC 89, 044318	EC/neutrino	51Cr; 51V (6+ states)
2014	A. Kwiatkowski et al. PRC 89, 045502	0v2B/neutrino	48Ca; 48Ti
2014	A. Kwiatkowski et al. PRL (submitted)	structure (N=20)	27-34AI

year	article	physics	nuclides
2012	S. Naimi et al., PRC 86	structure (N = 40)	58-66Mn
2012	A. Herlert et al. EPJA	recoil-ion trapping	61-63Fe
2012	F. Herfurth et al., EPJA	rp process	Z > 32 p-rich
2012	D. Fink et al., PRL 108, 062502	0v2B/neutrino	110Pd-110Cd
2013	R. Wolf et al. PRL 110, 041101	neutron-star crust	82Zn

year	article	physics	nuclides
2012	S. Naimi et al., PRC 86	structure (N = 40)	58-66Mn
2012	A. Herlert et al. EPJA	recoil-ion trapping	61-63Fe
2012	F. Herfurth et al., EPJA	rp process	Z > 32 p-rich
2012	D. Fink et al., PRL 108, 062502	0v2B/neutrino	110Pd-110Cd
2013	R. Wolf et al. PRL 110, 041101	neutron-star crust	82Zn

year	article	physics	nuclides
2013	F. Wienholtz et al., Nature	structure	52-54Ca (MR-ToF)
2013	R. Wolf et al. Int. J. Mass Spec. 349, 123	proof of principle	137Eu
2013	J. Stanja et al. PRC 88, 054304	structure (spectro)	190mTl; 194(m)Tl; 198At
2013	V. Manea et al. PRC 88, 054322	structure	98-100Rb
2014	Ch. Boehm et al. PRC (submitted)	structure	190TI
2014	S. Kreim et al. PRC (submitted)	structure	233Fr

MR-TOF-MS@FRS-GSI

SLOWRI @ RIKEN

P[ND]² 2005

half life (seconds)

relative uncertaint

ENAM 2008

relative uncertainty

ARIS 2011

relative uncertainty

ARIS 2014

half life (seconds)

relative uncertainty

The AME2012 atomic mass evaluation *

(I). Evaluation of input data, adjustment procedures

G. Audi^{1,§}, M. Wang^{1,2,3}, A.H. Wapstra^{4,†}, F.G. Kondev⁵, M. MacCormick⁶, X. Xu^{2,7}, and B. Pfeiffer^{8,‡}

Observations and statistics (from results *published* 2011-2012):

(source: AME2012)

Total of about 447 direct measurements (total data):

TOF (99): ESR (65); CSR (18); NSCL (16);

TRAPS (348):

CPT	(122)
ISOLTRAP	(54)
JYFL	(86)
LEBIT	(8)
SHIPTRAP	(20)
TITAN	(37)
TRIGATRAP	(21)

93 new reaction/decay data from: RIKEN, JYFL, GSI, JINR, et al.

For comparisons see: A. Kankainen et al. JPG (2012)

AME2003-2012

Direct: +416

Data Getting Better!

The AME: the stepping stone to theory

	AME2003
Total data	7773
Used (-BCDFU)	6169
Equations	1381
Parameters	847
X ² expected	534
X^2 obtained	814
gs masses	2228
gs estimations	951
isomers	201
iso estimations	122
Reactions/decays	967
Mass spectrometry	/ 414
X-indirect	1.27
X-direct	1.16

The AME: the stepping stone to theory

	AME2003	AME2012
Total data	7773	12437
Used (-BCDFU)	6169	5556
Equations	1381	1947
Parameters	847	1176
X ² expected	534	771
X^2 obtained	814	765
gs masses	2228	2438
gs estimations	951	915
isomers	201	336
iso estimations	122	128
Reactions/decays	967	1117
Mass spectrometry	<mark>/ 414</mark>	830
X-indirect	1.27	1.02
X-direct	1.16	0.96

Data getting better (not going as far...)

A (very) simplified overview of mass models

physics input

algebraic formulas *micro*scopic sculpturings of a *macro*scopic blob microscopic nucleon-nucleon interaction

ease of use

Garvey-Kelson + others (2013)

FRDM WS4 (2014) HFB (27!) D1M (2009)

PHYSICAL REVIEW C 87, 044313 (2013) Empirical formulas for nucleon separation energies M. Bao, Z. He, Y. M. Zhao, and A. Arima

PHYSICAL REVIEW C 87, 044313 (2013) Empirical formulas for nucleon separation energies M. Bao, Z. He, Y. M. Zhao, and A. Arima

PHYSICAL REVIEW C 87, 024319 (2013) Extrapolations of nuclear binding energies from new linear mass relations D. Hove, A. S. Jensen, and K. Riisager

FIG. 5. The differences between our extrapolations and the measured values where the error bars are based solely on the extrapolated uncertainties. The crosses indicate the difference between Audi and Meng's extrapolations and the measurements.
Theoretical Mass Models: Macroscopic - Microscopic / Liquid Drop

FRDM: Finite Range Droplet Model - New fit to 2011 AME! (2012?)P. Moller J.R. Nix, W.D. Myers, W.J. Swiatecki,At. Data Nuc. Data Tables 59 (1995) 185

Kazuhiro Oyamatsu, Kei Iida, Hiroyuki Koura, Phys. Rev. C 82 (2010) 027301 Kazuhiro Oyamatsu, Kei Iida, Phys. Rev. C 81 (2010) 054302

Ning Wang, Zuoying Liang, Min Liu, Xizhen Wu, Phys. Rev. C 82 (2010) 044304 Ning Wang, Min Liu, Xizhen Wu, Phys. Rev. C 81 (2010) 044322

Wigner-Kirkwood (only 10 parameters but even-even cases only!): A. Bhagwat, X. Vinas, M. Centelles, P. Schuck, R. Wyss, Phys. Rev. C 81 (2010) 044321 A. Bhagwat, X. Vinas, M. Centelles, P. Schuck, R. Wyss, Phys. Rev. C 86 (2012) 044316

Some new theoretical approaches

Hagen, Hjorth-Jensen, Jansen, Machleidt, Papenbrock Phys. Rev. Lett. 108 (2012) Continuum effects & 3N forces – coupled cluster

T. Otsuka et al. Phys. Rev. Lett. (2010) *Renewal of the tensor force*

Nature (2013): *N* = 32 shell closure in Ca F. Wienholtz and the ISOLTRAP Collaboration J.D. Holt, A. Schwenk et al. Chiral (3-body) EFT calculations of Ca isotopes

Phys. Rev. C (2013)
New K masses across N = 32
V. Soma, C. Barbieri, Th. Duguet et al.
Gorkov-Green's function approach

Phys. Rev. C 87, 021303(R) (2013)

Ab initio calculations of medium-mass nuclei with explicit chiral 3N interactions Sven Binder, Joachim Langhammer, Angelo Calci, Petr Navrátil, and Robert Roth

20 < Z < 100

Will new radioactive-beam facilities solve the problem?

RIBF@RIKEN, Japon

Conclusions

Lichtenberg: To find something new, build something new.

Conclusions

Lichtenberg: To find something new, build something new.

Kierkegaard: I must find a truth that is true for me.

Conclusions

Mass Models microscopic era; extrapolation still uncertain...

Lichtenberg: To find something new, build something new.

Kierkegaard: I must find a truth that is true for me.

Conclusions

Mass Models microscopic era; extrapolation still uncertain...

Lichtenberg: To find something new, build something new.

Confucius: When it is obvious that goals cannot be reached, don't adjust the goals, adjust the actions.

Kierkegaard: I must find a truth that is true for me.