DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

Modeling fission in FIFRELIN

Olivier LITAIZE, Olivier SEROT, Léonie BERGE

CEA, DEN, Cadarache F-13108 Saint-Paul-lez-Durance France

P(ND)²-2 Perspectives on Nuclear Data for the Next Decade, 14-17 october, 2014, BIII, France

- Models in FIFRELIN
- **Fission observables: comparison with experiments**
- Beyond common observables

Context

Deterministic + Monte Carlo

Monte Carlo

Codes for simulating fission fragment de-excitation

- Madland-Nix model @ LANL, USA (neutrons / PFNS + Nubar) 1982
- Point-by-Point model @ Bucharest Univ., Romania (extended MN+) ~2000
- **GEF** code @ CENBG, France (*from CN to Fiss. Obs.*) ~2010
- CGMF code @ LANL, USA (Fiss. Obs. / -W or -HF model) ~2005
- FREYA code @ LLNL, USA (Fiss. Obs. / -W model) ~2010
- FIFRELIN code @ CEA, France (Fiss. Obs. / -W or -HF model) ~2010
 - ✓ Monte Carlo method was used at the end of the 1950's to simulate the de-excitation of hot nuclei (high energy, high spin) : *Dostrovsky et al., Phys. Rev.* 111, 1659 (1958), *Phys. Rev.* 116, 683 (1959), *Phys. Rev.* 118, 781 (1960), *Phys. Rev.* 119, 2098 (1960).
 - Application to fission in the 1960's 1970's: Gordon et al. Phys. & Chem. of Fission, vol. II, 73 (1965), Gavron, Nucl. Instr. Meth. 115, 93 (1974), 99 (1974).

Main contributions of Monte Carlo codes

- Distributions, correlations between fission observables,
- Complete and consistent set of calculated fission observables: neutron spectra and multiplicities as well as gamma spectra and multiplicities in addition of prompt energy release, post neutron yields, ...

O. LITAIZE, P(ND)²-2 Perspectives on Nuclear Data for the Next Decade, 14-17 october, 2014, BIII, France

Context

Models in FIFRELIN

Fission observables: comparison with experiments

Beyond common observables

Perspectives

Definitions

- Prompt emission : before β^- decay
- ✤ Prediction : By establishing the 'as better as possible' calculation scheme (models, model parameters, hypothesis...) we can reproduce some given 'target observables' (global quantities, e.g. v_L , v_H) and then look at other ones (predicting them): $P(v), P(M_{\gamma}), \overline{v} (TKE) , ...$

Hypothesis

- Binary Fission
- $n/\gamma/e^-$ emission after FF full acceleration (fragments have recovered their gs deformation)
- ✤ NEDA (A. Matsumoto et al., J. of Nucl. Sc. and Tech. 49, 782 (2012)) not accounted for.
- SN (*N. Carjan et al., Phys. Rev. C* 85, 044601 (2012)) not accounted for.

Models in **FIFRELIN**

O. LITAIZE, P(ND)²-2 Perspectives on Nuclear Data for the Next Decade, 14-17 october, 2014, BIII, France

DE LA RECHERCHE À L'INDUSTRI

Models in FIFRELIN

O. LITAIZE, P(ND)²⁻² Perspectives on Nuclear Data for the Next Decade, 14-17 october, 2014, BIII, France

Fission Fragment deexcitation (Weisskopf or Hauser-Feshbach models)

Weisskopf evaporation theory for neutron emission + DICEBOX like MC scheme for gamma emission ('Nuclear Realization')

- Residual nuclear temperature T(A-1,Z,E*)
- Step by step temperature dependent neutron spectrum

Fission Fragment deexcitation (Weisskopf or Hauser-Feshbach models)

D. Regnier et al., Phys. Proc. 47, 47 (2013)

Hauser-Feshbach' statistical theory for n/γ emission

- Neutron transmission coefficients from : Talys/Ecis code (Koning-Delaroche, Jeukenne-Lejeune-Mahaux OMP from RIPL-3)
- Gamma transmission coefficients (as previously described)
 - Level densities

CGCM,CTM,HFB-tabulated

• Strength functions

SLO, EGLO, QRPA (from HFB or HF+BCS)

• Experimental nuclear level schemes

NB: Experimental nuclear level schemes taken from RIPL-3 are completed with models from $E_{cut-off}$ up to an energy E_{bin} corresponding to a given level density (default: 5.10⁴ MeV⁻¹). E_{bin} is the starting point for bin description.

O. LITAIZE, P(ND)²-2 Perspectives on Nuclear Data for the Next Decade, 14-17 october, 2014, BIII,

 $P_n = \frac{\Gamma_n}{\Gamma_n + \Gamma_n}$

Models in FIFRELIN

130 140 150 160 170

rigid spheroid moment of inertia 9/h² [MeV⁻¹] 80 0.5 x rigid spheroid $\beta_2(Z_{UCD},A)$ 60 40

 R_{τ}^{min} , R_{τ}^{max}

Free parameters of the simulation (the big 5!)

□ Fraction (k) of the rigid spheroid moment of inertia 𝔅 involved in the rotational energy formula $E_{rot} = \hbar^2 J (J+1) / (2 \not Q)$

- Rigid spheroid : $\beta = \mathbf{k} \times \beta_{rig} = \mathbf{k} \times 2/5 AMR^2 (1+0.31\beta_2 + \cdots)$ models for
 - Hydrodynamical system : $\mathcal{Q} = \mathbf{k} \times \mathcal{Q}_{fluid} = \mathbf{k} \times (9/8\pi) AMR^2 \beta_2^2$
 - From AMEDEE data base : $g = g_{AMEDEE}$ [Hilaire et al. Eur. Phys. J. A33, 237 (2007)]

Initial fission fragment total angular momenta $P(J) = \frac{(J+1/2)}{\sigma^2} \exp\left(-\frac{(J+1/2)^2}{\sigma^2}\right)$

- $\sigma^2 \sim \mathcal{G}T/\hbar^2$ [used in previous studies: Litaize et al., Phys. Proc. 31, 51 (2012)]
- $<\sigma_{l}>, <\sigma_{H}>$
- $<J>(A) \rightarrow \sigma(A)$
- $\langle J \rangle (A, E^*) \rightarrow \sigma(A, E^*)$

Extrema values of the temperature ratio $R_{\tau}(A)$

O. LITAIZE, P(ND)²-2 Perspectives on Nuclear Data for the Next Decade, 14-17 october, 2014, BIII, France

(!) Calculated values may change a little from a presentation to another due to releases of the code

Fission observables: comparison with experiments

Beyond common observables

Perspectives

DE LA RECHERCHE À L'INDUSTI

Fission Observables: comparison with experiment

Mass number A

O. LITAIZE P(ND)²-2 Perspectives on Nuclear Data for the Next Decade, 14-17 october, 2014, BIII, France

Fission Observables: comparison with experiment

DE LA RECHERCHE À L'INDUSTI

O. LITAIZE P(ND)²-2 Perspectives on Nuclear Data for the Next Decade, 14-17 october, 2014, BIII, France

DE LA RECHERCHE À L'INDUSTR

Fission Observables: comparison with experiment

O. LITAIZE P(ND)²-2 Perspectives on Nuclear Data for the Next Decade, 14-17 october, 2014, BIII, France

Fission Observables: comparison with experiment

DE LA RECHERCHE À L'INDUSTI

Context

Models in FIFRELIN

Fission observables: comparison with experiments

Beyond common observables

Perspectives

DE LA RECHERCHE À L'INDUSTRI

Beyond common observables

DE LA RECHERCHE À L'INDUSTR

Beyond common observables

Influence of the maximum half life considered in the simulation

→ Useful for comparison with experiments (coincidence time window)

O. LITAIZE P(ND)²-2 Perspectives on Nuclear Data for the Next Decade, 14-17 october, 2014, BIII, France

Beyond common observables

DE LA RECHERCHE À L'INDUSTRI

Cea

Beyond common observables

Noticeable difference observed between two models (among others) below 200 keV...

DE LA RECHERCHE À L'INDUSTR

Cea

Beyond common observables

Beyond common observables

O. LITAIZE P(ND)²-2 Perspectives on Nuclear Data for the Next Decade, 14-17 october, 2014, BIII, France

DE LA RECHERCHE À L'INDUSTR

Cea

Beyond common observables

Around 400 nuclei calculated

Introduction

Models in FIFRELIN

Fission observables: comparison with experiments

Beyond common observables

Perspectives

Ongoing work

- Fission modes,
- Excitation energy sharing at scission,
- Multiple chance fission,
- Scission neutrons,
- Level Density, spin cut-off,
- Photon strenght functions,
- Neutron transmission coefficients, ...
- Weisskopf / Hauser-Feshbach deexcitation models,
- Parallel computing
- Coupling codes, extended application area (detection, transport in reactors, heating, ...)

Isomeric ratio calculations

¹⁵²EU after thermal neutron capture

Isomeric ratio and level population calculations

Calculate a matrix of isomeric ratio in a [J , E^{*}, π] ensemble

Simulation of fission gives Spin distribution after neutron

emission P(J) and excitation energy after neutron emission P(E*)

- Could be used to estimate isomeric ratio in fission and to select the optimal distribution.
- > Find the best spin distribution that allows to reproduce 'fine' observables:
 - Yields of specific fragment pairs (Kr-Ba, ...),
 - Population of well known 2⁺ states of even even nuclei (from EXILL campaign and FIPPS in a near future).

CEA/DEN - CEA/DSM – CNRS/LPSC collaboration

Improve Modeling

□ Using tabulated 'microscopic' ingredients - HFB +QRPA compared to SLO, EGLO, MLO ... a clash of clans ? ... not sure.

Accounting for energy partition at scission from microscopic calculations provided by SPY code (PES + HFB D1S) to estimate the energy available for particle emission Panebianco et al., Phys. Rev. C, 064601 (2012).

Input / Output	Today	Next decade ?
<i>Mass and Kinetic Energy</i> <i>distributions before</i> <i>neutron emission</i>	 Reconstructed from experimental post neutron distributions, Calculated from fission mode parameters 	 HFB calculations (CEA/DAM), Langevin equations (LANL, LLNL), Provided by GEF code (CENBG), New experimental facilities
Charge distribution	 UCD+∆Z+EOZ+EON. 	New experimental facilities (FALSTAFF, FIPPS, SOFIA, SPIDER).
Spin distribution	 Various spin cut-off formula Check with PFGS, PFGM 	 Check with isomeric ratio Check with yields of specific fragment pairs (EXILL)
Excitation energy sharing	• R _T (A)	 HFB from SPY code (CEA/DAM/DSM) Influence of scission neutrons
De-exciation process	CGCM-CTM/EGLO-SLO/KD	 CGCM-CTM/EGLO-SLO/KD + HFB/QRPA, deformed OMP, …
Observables	• Yield, spectrum, multiplicity from estimators	 Same + other from 'root tree', angular correlations,

DE LA RECHERCHE À L'INDUSTR

Thank you for your attention ...

🗙 FIFRELIN Root Analysis		
Generate Tree		
Launch TreeViewer		
Mass Yield before neutron emission		
Mass Yield after neutron emission		
Isotopic Yield		
P(nu) light		
P(nu) heavy		
P(nu) total		
Neutron Spectrum (Lab.)		
Neutron Spectrum (Com.)		
Initial Kinetic Energy Distribution		
Angular Momentum Distribution (Light)		
Angular Momentum Distribution (Heavy)		
Primary Excitation Energy Probability (Light)		
Primary Excitation Energy Probability (Heavy)		
Average Prompt Neutron Mutiplicity versus A		
Average Prompt Neutron Mutiplicity versus TKE		
Gamma Energy versus A		
Average Center Of Mass Neutron energy versus A		
Chart of Fission Fragments		
Total Kinetic Energy and Mass Distribution		
Kinetic Energy and Mass Distribution		
Average Prompt Neutron Multiplicity versus Total Kinetic Energy and Mass Number		
Mass Yield For Cold Fission		
Chart of Fission Fragments for Cold Fission(with TH2I Class)		
Chart of Fission Fragments for Cold Fission with TKE>210MeV (with TH2I Class)		
Close Bar		

240 Total Kinetic Energy and Mass Distribution Y_TKE_A 1998426 126.5 184.5 18.55 9.459 1.998e+06 3000 TH2I_Y Entries Mean x Mean y RMS x RMS y 220 2500 Integral 200 TKE (MeV) 2000 180 1500 1000 160 500 140 0 120 180 100 140 80 160 Α

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Cadarache | 13108 Saint Paul Lez Durance T. +33 (0)4 42 25 49 13 | F. +33 (0)4 42 25 70 09

Direction de l'Energie Nucléaire Département d'Etude des Réacteurs Service de Physique des Réacteurs et du Cycle Laboratoire d'Etudes de PHysique

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019