Modeling fission in FIFRELIN

Olivier LITAIZE, Olivier SEROT, Léonie BERGE

CEA, DEN, Cadarache
F-13108 Saint-Paul-lez-Durance
France

P(ND)_2-2 Perspectives on Nuclear Data for the Next Decade,
14-17 October, 2014, BIII, France
Context

Models in FIFRELIN

Fission observables: comparison with experiments

Beyond common observables

Perspectives
Codes for simulating fission fragment de-excitation

- **Madland-Nix** model @ LANL, USA *(neutrons / PFNS + Nubar)* 1982
- **Point-by-Point** model @ Bucharest Univ., Romania (extended MN+) ~2000
- **GEF** code @ CENBG, France *(from CN to Fiss. Obs.)* ~2010
- **CGMF** code @ LANL, USA *(Fiss. Obs. / -W or -HF model)* ~2005
- **FREYA** code @ LLNL, USA *(Fiss. Obs. / -W model)* ~2010
- **FIFRELIN** code @ CEA, France *(Fiss. Obs. / -W or -HF model)* ~2010

Main contributions of Monte Carlo codes

- Distributions, correlations between fission observables,
- Complete and consistent set of calculated fission observables: neutron spectra and multiplicities as well as gamma spectra and multiplicities in addition of prompt energy release, post neutron yields, ...

Context

CGM/F

FIFRELIN

GEF

Point by Point

FREYA
Context

Models in FIFRELIN

Fission observables: comparison with experiments

Beyond common observables

Perspectives
Definitions

- Prompt emission: before β^- decay
- Prediction: By establishing the ‘as better as possible’ calculation scheme (models, model parameters, hypothesis…) we can reproduce some given ‘target observables’ (global quantities, e.g. \bar{v}_L, \bar{v}_H) and then look at other ones (predicting them):

 \[P(\nu) , P(\nu \gamma), \bar{v}(TKE) , \ldots \]

Hypothesis

- Binary Fission
- $n/\gamma/e^-$ emission after FF full acceleration (fragments have recovered their gs deformation)
- NEDA (A. Matsumoto et al., J. of Nucl. Sc. and Tech. 49, 782 (2012)) not accounted for.
1. Mass (A)
2. Kinetic Energy (KE)
3. Nuclear Charge (Z)
4. Spin, Parity (J^π)
5. Excitation Energy (E^*)

Fission Fragment characteristics sampling

Pre-neutron mass yields from experiment or fission modes

Pre-neutron kinetic energy distributions as function of mass from experiment or fission modes

Nuclear Charge as a function of mass (Wahl model)

Spin distribution from models

Models in FIFRELIN

Pre-neutron kinetic energy distributions as function of mass from experiment or fission modes

Nuclear Charge Polarization as a function of mass from experiment

P(Z) gaussian + EOZ, EON factors

Spin distribution from models

$P(J) = \frac{(2J+1)}{2\sigma^2} \exp \left(-\frac{(J+1/2)^2}{2\sigma^2}\right)$
Excitation energy sharing between fragments

At scission:

intrinsic excitation energy
+ deformation energy + collective excitation

\[TXE = a_{sc} T_{sc}^2 + E_{def} + E_{coll} \]

After full acceleration:

the rotational energy is not included in the intrinsic excitation energy

\[TXE = a_L T_L^2 + a_H T_H^2 + E_{rot}^L + E_{rot}^H \]

A part of excitation energy at scission is converted in rotational energy (collective excitation)

Rotating deformed Liquid Drop model

\[E_{rot} = \frac{\hbar^2 J(J+1)}{2\Xi} \]

only the intrinsic excitation energy corresponding to

\[TXE - (E_{rot}^L + E_{rot}^H) \]

is partitioned through

\[E_{L,H}^* = a_{L,H} T_{L,H}^2 \]
∀ L, H \quad E^* = a \quad T^2

R_T(A) = T_L/T_H

A_L = A_{\text{CN}} - 132 \quad A_H = 132

\begin{align*}
A_L &= A_{\text{H}} = A_{\text{CN}} / 2 \\
R_T^\text{max} &= 1.0
\end{align*}

\begin{align*}
A_L &= 78 \quad A_H = A_{\text{CN}} - 78
\end{align*}

\begin{align*}
A_{\text{CN}} / 2 &\quad 132 &\quad A_{\text{CN}} - 78
\end{align*}

\begin{align*}
\text{Ignatuyk prescription} \\
a = \overline{a} \left(1 + \delta W \frac{1 - e^{-U^*}}{U^*} \right)
\end{align*}

\begin{align*}
\text{Shell corrections, pairing, …}
\end{align*}

\begin{align*}
\text{Max } R_T(A_{\text{H}}=130) ? \\
\text{R}_T(Z) ? \\
R_T^m
\end{align*}

\begin{align*}
R_T(A) \text{ succesfully tested by Talou et al., Phys. Rev. C 83, 064612 (2011)}
\end{align*}
Weisskopf evaporation theory for neutron emission

+ DICEBOX like MC scheme for gamma emission (‘Nuclear Realization’)

- Residual nuclear temperature $T(A-1,Z,E^*)$

- Step by step temperature dependent neutron spectrum

- Neutron emission down to $S_n(J) = S_n + E_{rot}(J)$

- Gamma emission:
 - Level densities
 - CGCM,CTM,HFB-tabulated
 - Strength functions
 - SLO,EGLO, QRPA (from HFB or HF+BCS)
 - Experimental level schemes from RIPL-3
\[P_n = \frac{\Gamma_n}{\Gamma_\gamma + \Gamma_n} \]

\[P_\gamma = \frac{\Gamma_\gamma}{\Gamma_\gamma + \Gamma_n} \]

‘Hauser-Feshbach’ statistical theory for n/\gamma emission

- Neutron transmission coefficients from:
 - Talys/Ecis code (Koning-Delaroche, Jeukenne-Lejeune-Mahaux OMP from RIPL-3)

- Gamma transmission coefficients (as previously described)
 - **Level densities**
 - CGCM,CTM,HFB-tabulated
 - **Strength functions**
 - SLO,EGLO, QRPA (from HFB or HF+BCS)
 - **Experimental nuclear level schemes**

NB: Experimental nuclear level schemes taken from RIPL-3 are completed with models from \(E_{\text{cut-off}} \) up to an energy \(E_{\text{bin}} \) corresponding to a given level density (default: \(5.10^4 \) MeV\(^{-1} \)).

\(E_{\text{bin}} \) is the starting point for bin description.
Free parameters of the simulation (the big 5!)

- **Fraction (k)** of the rigid spheroid moment of inertia J involved in the rotational energy formula $E_{rot} = \hbar^2 J (J + 1) / (2k)$

 - Rigid spheroid: $J = k \times J_{\text{rig}} = k \times 2/5 \ AMR^2 (1 + 0.31\beta_2 + \cdots)$
 - Hydrodynamical system: $J = k \times J_{\text{fluid}} = k \times (9/8\pi) \ AMR^2 \beta_2^2$

- **Initial fission fragment total angular momenta** $P(J) = \frac{(J + 1/2)}{\sigma^2} \exp \left(-\frac{(J + 1/2)^2}{\sigma^2} \right)$

 - $\sigma^2 \sim J \ T / \hbar^2$ [used in previous studies: Litaize et al., Phys. Proc. 31, 51 (2012)]
 - $<\sigma_L>, <\sigma_H>$
 - $<J>(A) \rightarrow \sigma(A)$
 - $<J>(A,E^*) \rightarrow \sigma(A,E^*)$

- **Extrema values of the temperature ratio** $R_{T}(A) \quad R_{T}^{\text{min}}, \ R_{T}^{\text{max}}$
(1) Calculated values may change a little from a presentation to another due to releases of the code

- Context
- Models in FIFRELIN
- Fission observables: comparison with experiments
- Beyond common observables
- Perspectives
Average prompt neutron multiplicity as a function of pre-neutron mass

Fission Observables: comparison with experiment

Average prompt neutron energy in CM as a function of pre-neutron mass

252Cf (sf)

Fission Observables: comparison with experiment

$^{252}\text{Cf (sf)}$

Average prompt gamma multiplicity as a function of pre-neutron mass

$N_{\gamma}(E)$

Prompt fission gamma spectrum

M_{γ} / MeV

A

γ multiplicity

mass number A

$0,0$ $0,1$ $0,2$ $0,3$ $0,4$ $0,5$ $0,6$ $0,7$ $0,8$ $0,9$ $1,0$ $1,1$ $1,2$ $1,3$ $1,4$ $1,5$

$1E-4$ $1E-3$ $0,01$ $0,1$ 1 10

\bullet Billnert 2012 (100keV, 3ns)

\bigcirc Verbinsky 1973 (140 keV, 10ns)

\bigcirc FIFRELIN (100 keV, 3ns)

\bigcirc Chyzh 2012 'Bayesian'

\bigcirc Chyzh 2012 'SVD'

\bullet Schmidt-Fabian 1988

\bigcirc FIFRELIN

\bigcirc Verbinsky 1973

\bigcirc Billnert 2012

\bullet Chyzh 2012 'Bayesian'

\bullet Chyzh 2012 'SVD'

Average prompt gamma multiplicity as a function of pre-neutron mass

$0,0$ $0,1$ $0,2$ $0,3$ $0,4$ $0,5$ $0,6$ $0,7$ $0,8$ $0,9$ $1,0$ $1,1$ $1,2$ $1,3$ $1,4$ $1,5$

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M_{γ} / MeV

A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

γ multiplicity

mass number A
Fission Observables: comparison with experiment

Average prompt neutron multiplicity as a function of pre-neutron fragment mass

\[\overline{\nu}(A) \]

Average prompt gamma multiplicity as a function of pre-neutron fragment mass

\[\overline{M}_\gamma(A) \]

Neutron average quantities

<table>
<thead>
<tr>
<th></th>
<th>(\overline{\nu}_L)</th>
<th>(\overline{\nu}_H)</th>
<th>(\overline{\nu})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nishio 2004</td>
<td>1.42</td>
<td>1.01</td>
<td>2.43 ± 0.03</td>
</tr>
<tr>
<td>FIFRELIN</td>
<td>1.41 ± 0.001</td>
<td>1.02 ± 0.001</td>
<td>2.43 ± 0.001</td>
</tr>
</tbody>
</table>

Gamma average quantities

<table>
<thead>
<tr>
<th></th>
<th>Threshold</th>
<th>(\Delta T)</th>
<th>(\langle \gamma/f \rangle)</th>
<th>(\langle E_{\gamma,\text{tot}} \rangle) (MeV)</th>
<th>(\langle \varepsilon_\gamma \rangle) (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oberstedt 2013</td>
<td>100 keV</td>
<td>5 ns</td>
<td>8.19 ± 0.11</td>
<td>6.92 ± 0.09</td>
<td>0.85 ± 0.02</td>
</tr>
<tr>
<td>FIFRELIN</td>
<td>100 keV</td>
<td>5 ns</td>
<td>8.04 ± 0.01</td>
<td>7.02 ± 0.01</td>
<td>0.875 ± 0.001</td>
</tr>
</tbody>
</table>

\(235^U(n_{\text{th}},f) \)
Fission Observables: comparison with experiment

Prompt fission neutron spectrum

\[N_y(E) \]

\[^{235}\text{U}(n_{th}, f) \]

<table>
<thead>
<tr>
<th>FIFRELIN</th>
<th>(\langle E \rangle)</th>
<th>(\langle V \rangle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-HF (LDM)</td>
<td>2.102(2)</td>
<td>2.424(2)</td>
</tr>
<tr>
<td>(CGCM)</td>
<td>1.891(1)</td>
<td>2.444(1)</td>
</tr>
<tr>
<td>(CTM)</td>
<td>2.079(2)</td>
<td>2.397(2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIFRELIN -W</th>
<th>(\langle E \rangle)</th>
<th>(\langle V \rangle)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.945(2)</td>
<td>2.430(3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JEFF-3.2</th>
<th>(\langle E \rangle)</th>
<th>(\langle V \rangle)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.03</td>
<td>2.42</td>
</tr>
</tbody>
</table>

- Micro data 1.974(2)
- Macro data 2.03

Ratio to Maxwellian (T=1.32 MeV)

- Hambsch 2010
- Starostov 1983
- Nefedov 1983
- Lajtai 1985
- JEFF-3.2
- CGCM/EGLO/KD
- CTM/EGLO/KD
- HFB/EGLO
- -W

O. LITAIZE P(ND)^2-2 Perspectives on Nuclear Data for the Next Decade, 14-17 October, 2014, BIII, France
Fission Observables: comparison with experiment

Position of the structures at low energy is reproduced by the calculation

$^{235}\text{U}(n_{\text{th}},f)$

Prompt fission gamma spectrum

Lower strength in the calculation above 6 MeV?
Fission Observables: comparison with experiment

Average prompt gamma multiplicity as a function of pre-neutron fragment mass

\[239\text{Pu} \ (n_{\text{th}}, f) \]

\[M_\gamma(A) \]

\[N_\gamma(E) \]

<table>
<thead>
<tr>
<th></th>
<th>Threshold [keV]</th>
<th>(\Delta T) [ns]</th>
<th>(M_\gamma) [(\gamma/f)]</th>
<th>(\langle E^\text{tot} \rangle) [MeV]</th>
<th>(\langle \epsilon_\gamma \rangle) [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbinski 1973</td>
<td>140</td>
<td>10</td>
<td>7.23</td>
<td>6.81 ± 0.03</td>
<td>0.94</td>
</tr>
<tr>
<td>FIFRELIN</td>
<td>140</td>
<td>10</td>
<td>7.19</td>
<td>6.81</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Prompt fission gamma spectrum

O. Serot, O. Litaize, D. Regnier, Workshop Gamma-2, 24-26 sept. 2013

O. LITAIZE P(ND)²-2 Perspectives on Nuclear Data for the Next Decade, 14-17 october, 2014, BIII, France
Context

Models in FIFRELIN

Fission observables: comparison with experiments

Beyond common observables

Perspectives
Beyond common observables

Resolution below 1.4 MeV: 5 keV

Gamma spectra
- per mass
- per charge
- per emitting fragment
- per multipolarity

$\gamma(E | A, Z, XL)$

$^{235}\text{U}(n_{th}, f)$
Influence of the maximum half life considered in the simulation

Useful for comparison with experiments (coincidence time window)

E_{level} = 266.83 keV
T_{1/2} = 2.0 ns

93\text{Rb}

Importance of the data available from nuclear structure
Sensibility of the PFGS to the initial spin distribution

- Increasing the initial spin of FF increases the PFGS in the low energy range (below 1 MeV).

\[{}^{235}\text{U}(n_{\text{th}},f) \]

\[<J>_L = 6 \hbar \]
\[<J>_L = 9 \hbar \]
Beyond common observables

Noticeable difference observed between two models (among others) below 200 keV…

\(^{235}\text{U}(n_{th},f)\)

Differential spectra & multiplicities

*O. LITAIIZE *P(ND)2-2 Perspectives on Nuclear Data for the Next Decade, 14-17 october, 2014, BII, France
The responsible could have a mass around 93

The responsible could be Kr, Rb or Sr ...

Remember that due to neutron emission, the mass shown here is not the mass of the γ-emitter
Beyond common observables

- **This guy may be potentially guilty**
- **Experiment could help to choose between those two models.**
- **Theory could explain why.**

- **Not this one!**

O. LITAIZE P(ND)²-2 Perspectives on Nuclear Data for the Next Decade, 14-17 October, 2014, Bill, France
Isotopic yields $Y(A,Z)$

Beyond common observables

Around 400 nuclei calculated
Introduction

Models in FIFRELIN

Fission observables: comparison with experiments

Beyond common observables

Perspectives
Ongoing work

- Fission modes,
- Excitation energy sharing at scission,
- Multiple chance fission,
- Scission neutrons,

- Level Density, spin cut-off,
- Photon strength functions,
- Neutron transmission coefficients, ...

- Weisskopf / Hauser-Feshbach deexcitation models,
- Parallel computing
- Coupling codes, extended application area (detection, transport in reactors, heating, …)
Isomeric ratio calculations

152Eu after thermal neutron capture

→ CIRENE measurements
→ Calculation: \(I_{\text{th}} = 0.21\% \)

- Experimental precision not sufficient. What about new facilities?
- Less sensitive to PSF
- Sensitive to LD

152Eu (\(J^\pi = 3^+ \))

- FIFRELIN
- [1] \(\langle I_{\text{res}} \rangle = (36.4 \pm 3.7)\% \)
- [1] \(\langle I_{\text{th}} \rangle = 35.9\% \)

![Graph showing isomeric ratio calculations for 152Eu after thermal neutron capture.](image-url)

- EGLO
- SLO
- HF BCS + QRPA
- HFB + QRPA

\(\langle I_{\text{R}} \rangle = 37.0 \)

\(\langle I_{\text{R}} \rangle = 36.5 \)

\(\langle I_{\text{R}} \rangle = 36.6 \)

\(\langle I_{\text{R}} \rangle = 36.9 \)
Calculate a matrix of isomeric ratio in a \([J, E^*, \pi]\) ensemble.

Simulation of fission gives Spin distribution after neutron emission \(P(J)\) and excitation energy after neutron emission \(P(E^*)\).

- Could be used to estimate isomeric ratio in fission and to select the optimal distribution.
- Find the best spin distribution that allows to reproduce ‘fine’ observables:
 - Yields of specific fragment pairs (Kr-Ba, …),
 - Population of well known 2\(^+\) states of even even nuclei (from EXILL campaign and FIPPS in a near future).

CEA/DEN - CEA/DSM – CNRS/LPSC collaboration
Improve Modeling

- Using tabulated ‘microscopic’ ingredients
 - HFB +QRPA compared to SLO, EGLO, MLO … a clash of clans ? … not sure.

- Accounting for energy partition at scission from microscopic calculations provided by SPY code (PES + HFB D1S) to estimate the energy available for particle emission

<table>
<thead>
<tr>
<th>Input / Output</th>
<th>Today</th>
<th>Next decade ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass and Kinetic Energy distributions before neutron emission</td>
<td>• Reconstructed from experimental post neutron distributions, • Calculated from fission mode parameters</td>
<td>• HFB calculations (CEA/DAM), • Langevin equations (LANL, LLNL), • Provided by GEF code (CENBG), • New experimental facilities</td>
</tr>
<tr>
<td>Charge distribution</td>
<td>• UCD+ΔZ+EOZ+EON.</td>
<td>• New experimental facilities (FALSTAFF, FIPPS, SOFIA, SPIDER…)</td>
</tr>
<tr>
<td>Spin distribution</td>
<td>• Various spin cut-off formula • Check with PFGS, PFGM</td>
<td>• Check with isomeric ratio • Check with yields of specific fragment pairs (EXILL)</td>
</tr>
<tr>
<td>Excitation energy sharing</td>
<td>• $R_T(A)$</td>
<td>• HFB from SPY code (CEA/DAM/DSM) • Influence of scission neutrons</td>
</tr>
<tr>
<td>De-excitation process</td>
<td>• CGCM-CTM/EGLO-SLO/KD</td>
<td>• CGCM-CTM/EGLO-SLO/KD + HFB/QRPA, deformed OMP, …</td>
</tr>
<tr>
<td>Observables</td>
<td>• Yield, spectrum, multiplicity from estimators</td>
<td>• Same + other from ‘root tree’, angular correlations, …</td>
</tr>
</tbody>
</table>