

Neutron Facilities

X. Ledoux

Ganil, Caen, France

Perspectives on Nuclear Data for the Next Decade, Xavier LEDOUX

1

Neutron Facilities

X. Ledoux

Ganil, Caen, France

Very Wide subject :

≈ 250 research reactors are operational

 \approx 164 accelerators in the IAEA database

IAEA data base http://nucleus.iaea.org/sites/accelerators

Research reactors around the world

RR application-oriented functions of **RRDB**

Application	Number of RR involved	Involved / Operational, %	Number of countries	
Education & Training	161	67	51	
Neutron Activation Analysis	122	51	54	
Radioisotope production	90	37	44	
Neutron radiography	68	28	40	
Material/fuel testing/irradiations	60	25	25	
Neutron scattering	48	21	32	
Nuclear Data Measurements	42	18	20	
Gem coloration	36	15	22	
Si doping	35	15	22	
Geochronology	26	11	21	
Neutron Therapy	20	8	13	
Other	95	40	29	
LAEA Indispensable to define priorities and plan our activities! ¹⁵ Contact: D.Ridikas@iaea.org				

- Energy domain
- Flux
- Energy spectrum : mono-energetic, continuous, quasi-mono-energetic
- Neutron production mode
- Time structure : pulsed or continuous
 - -Energy range
 - -Energy resolution
- Number and size of experimental areas
- Use of radioactive samples (actinide for fission studies)

- Energy domain
- Flux
- Energy spectrum : mono-energetic, continuous, quasi-mono-energetic
- Neutron production mode
- Time structure : pulsed or continuous
 - -Energy range
 - -Energy resolution
- Number and size of experimental areas
- Use of radioactive samples (actinide for fission studies)
- Sort by neutron production mode
- Facilities involved in nuclear data measurements (no integral measurement)
- List not exhaustive, focus on some recent or new facilities

Neutron fluxes and cross-sections

Perspectives on Nuclear Data for the Next Decade, Xavier LEDOUX

CER

14-17 Oct 2014

OUTLINE

• REACTORS

- ELECTRON ACCELERATOR BASED FACILITIES
- MONOENERGETIC NEUTRON FIELDS
- INTERMEDIATE ENERGY REACTIONS
- SPALLATION REACTIONS

7

OUTLINE

REACTORS

• ELECTRON ACCELERATOR BASED FACILITIES

• MONOENERGETIC NEUTRON FIELDS

• INTERMEDIATE ENERGY REACTIONS

• SPALLATION REACTIONS

8

- Neutron fission
- High flux
- No time spectrum
- Energy limited to 10 MeV
- Construction and exploitation very expensive
- Energy spectrum :

	rayonnement gamma	neutrons de 3 ^{tme} génération
rayonnement gamma	<u></u>	330-04
\$	de 2 ^{tma} génération	energiet
neutron originel	uranium 235 noyau fissile Lénergie	fragments de fission
uranium 235 noyau fissile	frogments de fission	energie -
	}	fragments
	rayonnement gamma	

- Neutron fission
- High flux
- No time spectrum
- Energy limited to 10 MeV
- Construction and exploitation very expensive
- Energy spectrum :

- Neutron fission
- High flux
- No time spectrum
- Energy limited to 10 MeV
- Construction and exploitation very expensive
- Energy spectrum :

- Neutron fission
- High flux
- No time spectrum
- Energy limited to 10 MeV
- Construction and exploitation very expensive
- Energy spectrum :

Institut Laue-Langevin (Grenoble, France)

58 MW, heavy water moderated 10¹⁵ n/cm²/s

Channel with high neutron flux : Measurement of actinide cross-section,

. . . .

Lohengrin spectrometer : study of fission fragment yields

Neutron filtering method

Elements	S	⁵⁸ Ni	V	Al	¹⁰ B
Thickness, g/cm ²	116.53	81.42	24.44	5.4	0.5

Traditional neutron filters used in NPD

3,5x10 Filtered beam intensity, a.u. 2 keV 24 keV 3,0x10 keV x 0.05 7.5 keV 133 2,5x10 59 keV 2,0x10 $54 \, \mathrm{keV}$ 3.5 keV $13 \, \mathrm{keV}$ 149 keV 1,5x10 x 3 1,0x10 -x 10 5.0x10 10° 10' 10² Neutron energy, keV

Institute for Nuclear research Kiev, Ukraine

14-17 Oct 2014

50

Neutron energy, keV

55

60

1,0x10-

0,0

35

40

45

Perspectives on Nuclear Data for the Next Decade, Xavier LEDOUX

14

65

OUTLINE

• REACTORS

• ELECTRON ACCELERATOR BASED FACILITIES

MONOENERGETIC NEUTRON FIELDS

• INTERMEDIATE ENERGY REACTIONS

• SPALLATION REACTIONS

Photo production of neutrons with bremsstrahlung

- Electron beam
- Photon production by Bremsstrahlung
- Neutron production by (γ,xn) or (γ,f) reaction

- Continuous neutron energy spectrum
- 0 < E_n < E_{e-}
- LINAC accelerator
- High power accelerator

GELINA, IRMM, Geel Belgium

- Electron energy: 140 MeV
- Pulse width: 1 ns
- 12 A (peak), 100 μA (average)
- Pulse repetition @ 800 Hz
- $<\Phi_n> = 3.4 \times 10^{13} / s$
- Sub-thermal to 20 MeV (1 2 MeV peak)
- Moderated neutron beam available
- Flight path: 10 400 m
- Transmission, capture and fission reactions

N-Elbe, Helmholtz-Zentrum Dresden-Rossendorf, Germany

- •Liquid lead target (25kW/cm³)
- •E⁻ beam 30 MeV, I=1mA
- •10¹³ n/s, bunch duration 5 ps
- •F=13 to 0,5MHz
- •Flight path 7 m, overlap =20 keV, 100keV<En<10 MeV

First beam with new Pb-loop: August 30, 2013

Perspectives on Nuclear Data for the Next Decade, Xavier LEDOUX

14-17 Oct 2014

N-Elbe, Helmholtz-Zentrum Dresden-Rossendorf, Germany

- •Liquid lead target (25kW/cm³)
- •E⁻ beam 30 MeV, I=1mA
- •10¹³ n/s, bunch duration 5 ps
- •F=13 to 0,5MHz
- •Flight path 7 m, overlap =20 keV, 100keV<En<10 MeV

First beam with new Pb-loop: August 30, 2013

Perspectives on Nuclear Data for the Next Decade, Xavier LEDOUX

14-17 Oct 2014

OUTLINE

• REACTORS

• ELECTRON ACCELERATOR BASED FACILITIES

• MONOENERGETIC NEUTRON FIELDS

• INTERMEDIATE ENERGY REACTIONS

SPALLATION REACTIONS

- Purely mono-energetic neutrons up to 7 MeV and between 14 -17 MeV

Van de Graaff accelerators of CEA/DIF

- 2 electrostatic accelerators
- Van de Graaff 4MV (0,4-4MV)
 - Light lons beams : H, D, He
 - Ion energy from 0,4 to 4 MeV
 - « Mobley » line for neutron production
 - Nuclear microprobe
- Van de Graaff tandem 7MV (NENUPHAR 1,8MV-7MV)

5 beam lines 2 experimental rooms

NENUPHAR, CEA, Bruyères-le-Châtel, France

- Refurbishment of the 7MV Tandem accelerator
- Neutron production up to 25 MeV D(d,n)³He)
- The belt is replaced by a chain

Ready to accelerate the first beam as soon as the authorization is obtained

The PTB Facility, Braunschweig, Germany

TOF Spectrometer Cyclotron CV 28

Monoenergetic fields : ⁷Li(p,n): $E_n = 144$ keV - 1MeV T(p,n) : En = 1MeV - 4 MeV D(d,n): En=5 MeV - 8MeV T(d,n) : $E_n = 14,8$ MeV-17MeV Quasi-monokinetic fields D(d,n): $E_n = 8$ MeV - 15 MeV T(d,n): $E_n = 17$ MeV - 23 MeV

Low scatter hall VDG and CV 28

- Metrology
- Study of the neutron source ¹⁵N(p,n)¹⁵O
- Inelastic scattering on ^{206,207}Pb, ²⁰⁹Bi
- β -delayed neutrons from ²³²Th and ²³⁷Np

Upgrade : The VDG will be replaced by a TANDETRON

Perspectives on Nuclear Data for the Next Decade, Xavier LEDOUX

14-17 Oct 2014

The PTB Facility, Braunschweig, Germany

TOF Spectrometer Cvclotron CV 28

Monoenergetic fields : ⁷Li(p,n): E_n = 144keV - 1MeV T(p,n) : En = 1MeV - 4 MeV D(d,n):En=5 MeV - 8MeV T(d,n) : E_n =14,8 MeV-17MeV Quasi-monokinetic fields D(d,n): E_n =8MeV - 15 MeV T(d,n): E_n =17MeV - 23 MeV

Low scatter hall VDG and CV 28

- Metrology
- Study of the neutron source ¹⁵N(p,n)¹⁵O
- Inelastic scattering on ^{206,207}Pb, ²⁰⁹Bi
- β -delayed neutrons from ²³²Th and ²³⁷Np

Upgrade : The VDG will be replaced by a TANDETRON

Perspectives on Nuclear Data for the Next Decade, Xavier LEDOUX

14-17 Oct 2014

FRANZ, Frankfurt, Germany

The main nuclear physics input to calculate abundances produced in the s process are Maxwellian Average Cross Sections (MCAS)

Licorne, Orsay, France

Lithium Inverse Cinematiques ORsay Neutron source

$^{7}Li + H \rightarrow n + ^{7}Be$

LaBra

H target

LaBra

7Li (13-17 MeV)

11B (33-54 MeV)

•Neutron production in inverse kinematic (1- 4 MeV) Neutrons are emitted in the forward direction:

- Less lost neutrons
- Detectors can be placed "outside" of the neutron flux

OUTLINE

• REACTORS

- ELECTRON ACCELERATOR BASED FACILITIES
- MONOENERGETIC NEUTRON FIELDS
- INTERMEDIATE ENERGY REACTIONS
- SPALLATION REACTIONS

Intermediate energy 20-200MeV

Quasi-mono-energetic spectrum:

- Proton beam on thin ⁷Li converter
- •⁷Li(p,n)⁷Be reaction Q= -1,64 MeV \rightarrow at 0° En \approx Ep 2 MeV
- Forward peak
- Limitations :
 - Spectrum not purely mono-energetic -> pulsed beam
 - Low melting point of Lithium (limited intensity) -> liquid target
 - Target highly activated (7Be)

Intermediate energy 20-200MeV

Quasi-mono-energetic spectrum:

- Proton beam on thin ⁷Li converter
- •⁷Li(p,n)⁷Be reaction Q= -1,64 MeV \rightarrow at 0° En \approx Ep 2 MeV
- Forward peak
- Limitations :
 - Spectrum not purely mono-energetic -> pulsed beam
 - Low melting point of Lithium (limited intensity) -> liquid target
 - Target highly activated (7Be)

Continuous spectrum:

- Proton or deuteron beam on thick converter Be or C
- Continuous spectrum up to beam energy
- Flux increasing with energy
 - The beam stops in the converter
 - Large power deposition \rightarrow cooling is challenging

Several facilities proposes both types of spectra

Some Quasi-Monoenergetic facilities

neutron flux up to 3 *10⁸ n/cm²/s

Perspectives on Nuclear Data for the Next Decade, Xavier LEDOUX

35

Some Quasi-Monoenergetic facilities

Some Quasi-Monoenergetic facilities

target 🗍 (1	Collimator EURADOS Report 2013-02			Proton Ream	1997 - 1997 -	
r vr AVF 238U F.C	Facility	Energy range [MeV]	Peak neutron fluence rate at standard irradiation position [cm ⁻² s ⁻¹]	Beam angle relative to primary beam	Remarks	Neutron Beam
/ i ←	iThembaª	35 – 200	104	0°, 4°, 8°, 12°, 16°		n polyethyle
	TSL [▶]	11 – 175	10 ⁶ for <i>E</i> _p < 100 MeV 10 ⁵ for <i>E</i> _p > 100 MeV	0°	large experimental area	
TSL, Up	TIARA	40-90	104	0°	large irradiation room	h Repub
rer Proton monito	CYRIC ^d	20-90	10 ⁶	0°		d beams 6-25 MeV (3 μA) s 12-20 MeV (3 μA)
	RCNP ^e	100 - 400	10⁵	0° - 30°	up to 100 m ToF	18-55 MeV (1 μA)
US AR	NPI ^f	18 - 36	Up to 10 ⁹	0°	Standard irradiation very close to source	Li(C) and
0 1 2	NFS ^g	20 - 33	n.a. yet	0°	Start late 2014	L1(C) and
				ISBN 978-3-943701-04-3	deuterons 11-20 MeV (35-20 µA)	10 ⁸ n/cm²/

Perspectives on Nuclear Data for the Next Decade, Xavier LEDOUX

37

High intensity proton and deuteron beams of the Linar accelerator of SPIRAL-2

- Pulsed neutron beam
- Continuous spectrum : d + thick converter
- QMN spectra : p + thin converter
- Neutron energy range 0,1-40 MeV
- Measurements by activation method

High average flux in the 1-40 MeV range
Good energy resolution

Jyväskylä, Finland

- High neutron flux by p induced reaction on thick converter
- Try to reproduce the fast reactor spectrum
- Study of fission yield

Water cooling on back side (5 mm)

Goal 10¹² n/s on the fission target 30 MeV proton up to 100 µA

OUTLINE

• REACTORS

- ELECTRON ACCELERATOR BASED FACILITIES
- MONOENERGETIC NEUTRON FIELDS
- INTERMEDIATE ENERGY REACTIONS
- SPALLATION REACTIONS

Spallation reaction

Proton beam with energy > 800MeV

Very intense neutrons source Proton accelerator 1 GeV x 1 mA = 1 MW $\Rightarrow 10^{17} \text{ n/s}$

- •Neutron production up to proton energy
- •Use of moderator to increase neutrons flux at low energy thermal or cold
- •Multipurpose Facilities :
 - Material studies
 - Radio element production for medicine
 - Small part in nuclear data measurement
- •N-tof, WNR, SNS, ESS, JPARC

Challenges :

- High intensity accelerator
- Target power deposition
- Windows between accelerator and target

Perspectives on Nuclear Data for the Next Decade, Xavier LEDOUX

14-17 Oct 2014

42

The n-tof, CERN, Switzerland

- Extremely high instantaneous neutron flux (10⁵ n/cm²/pulse)
- ► High resolution in energy (DE/E=10⁻⁴) \rightarrow study resonances
- Large energy range (25 meV<E_n<1 GeV)
- Low repetition rate (<0.8 Hz) → no wrap-around</p>

Perspectives on Nuclear Data for the Next Decade, Xavier LEDOUX

- 300 neutrons per proton at 20 GeV
- 185 m long flight path

14-17 Oct 2014

The new n_TOF EAR-2 neutron beam line

Under commissioning

First physics experiments by end 2014:

- Capture on fissile isotopes
- Capture on small mass s-process branching points
- Fission spectroscopy and prompt g-rays with STEFF
- Elastic/inelastic reactions (HPGe or CsI+Si telescopes)
- Fission on high activity samples (e.g. ²⁴⁰Pu)
- Irradiation of electronic components (@1.5 m)

ANNRI, J-PARK, Japan

 Accurate Neutron Nucleus Reaction Measurement Instrument • Two lines of the Materials and Life science experimental Facility (MLF). Proton Beam • Two flight path (21 and 28 m) Neutrons produced by the Japanese Spallation Neutron Source -3 GeV proton beam on mercury target 1.5 10¹⁷ n/s Hg Target -1 MW beam power, 25 Hz repetition rate Liquid H₂ Moderator **BL08: SuperHRPD** BL09: SPICA BL05: NOP Experimental Area 1 Experimental Area 2 Beam Stopper **BL10: NOBORU BL04: ANNRI** CM **BL11: PLANET** BL03: iBIX BL12: HRC BL02: DNA Neutron Beam **BL01: 4SEASONS** Entrance

Concrete

Boron Resin

Iron

Neutron capture cross-section measurement of Minor Actinides and Long Live fission products for the study of transmutation of nuclear waste

Collimator

Scale

10 (m)

Ge Detector Array

L = 21.5 m

PM Poisoned moderator

no. 🕅 a

BL21: NOVA

BL20: iMATERIA

BL19: TAKUMI

BL18: SENJU

CM Coupled moderator DM Decoupled moderator

Proton Beam

BL15: TAIKAN

BL16: SOFIA

BL17: SHARAKU

BL14: AMATERAS

VaI(TI) Spectrometer L = 27.9 m

Other multipuproses spallation neutron sources

The European Spallation Source 2,5 GeV, 5MW, W target Operational in 2025

Perspectives on Nuclear Data for the Next Decade, Xavier LEDOUX

46

Flux comparison

Flux comparison

Summary

- Numerous neutron facilities exist
- Each energy domain has an adapted production mode
- The energy and flux are not the only characteristics to take into account
 - Time structure and energy resolution
 - Collimation
 - Background conditions
- Tendency for the next decade :
 - Increase the neutron flux :
 - Use of small samples (radioactive)
 - Multiple coincidence detection (low efficiency)
 - Most of the facilities are no more purely dedicated to nuclear data measurement
- But a facility is nothing without:
 - Detector(s)
 - Target
 - Physicists

References

•1st ERINDA Progress Meeting and Scientific Workshop, Prague, 16-18 January 2012

•ERINDA, Workshop, CERN, Geneva, Switzerland - 1-3 October 2013

•Joliot Curie School, "Neutron and Nuclei", Fréjus, 28 Sep-3 Oct 2014

