Perspectives on Measurements of Prompt Fission Neutron Spectra for Fission Induced by Fast Neutrons

Robert C. Haight

Los Alamos National Laboratory

Second International Workshop on Perspectives on Nuclear Data for the Next Decade

CEA Bruyères-le-Châtel, France

October 14-17, 2014

LA-UR-14-27963 and LA-UR-14-23021

Perspectives on measurements of prompt fission neutron spectra

- Spontaneous fission (²⁵²Cf)
- Neutron-induced fission
 - Thermal neutron-induced fission
 - Fast neutron-induced fission

Components for neutron-induced PFNS measurements

- Experiments
 - Neutron source intense, low background neededs
 - Detectors good neutron identification (psd or ?), good efficiency, "modelable" in MCNP, GEANT, ...
 - Data acquisition implementation of new hardware, firmware, software good resolution, good timing, programmable, capable of handling high counting rates
- Modeling neutron transport as corrections to literature data, and design and analysis of new experiments

Predictions for PFNS measurement technologies

• Experiments

- Neutron source intense, low background needed no new facilities for this type of measurement (?) (:- ()
- Detectors good neutron identification (psd or ?), good efficiency, "modelable" in MCNP, GEANT ... nothing for greatly advanced capabilities (-(), (-))
- Data acquisition implementation of new hardware, firmware, software good resolution, good timing, programmable, capable of handling high counting rates -- In progress (:-)
- Modeling neutron transport as <u>corrections</u> to literature data, and <u>design and analysis</u> of new experiments-- <u>NOW and</u>
 <u>continuing</u> :-

Predictions for PFNS measurements – work to be done

- ²³⁹Pu(n,f) for incident neutron energies > 0.5 MeV and to requested accuracy
 - Resolve discrepancies for PFNS > 0.5 MeV probable in 2-3 years
 - Produce new data for PFNS in range 0.05 to 0.50 MeV -- maybe in 3-4 years
- ²³⁵U(n,f) for incident neutron energies > 0.5 MeV
 - Data for PFNS > 0.5 MeV probable in 3-4 years
 - Produce new data for PFNS in range 0.05 to 0.50 MeV -- maybe in 4-5 years

Data in the literature: PFNS for ²³⁹Pu(n,f) – incident monoenergetic sources

LOS Alamos

EST.1943

Discrepancy in monoenergetic data for high-energy end of PFNS

Los Alamos
 NATIONAL LABORATORY
 ESU 1943

Literature data, discrepancies and target accuracies

Data in the literature: PFNS for ²³⁹Pu(n,f) – incident continuous sources

Los Alamos
 NATIONAL LABORATORY

EST.1943

Operated by Los Alamos National Security, LLC for NNSA

9

Measurements made with "white" neutron source at LANSCE for ²³⁹Pu(n,f): CEA-LANL collaboration

S. Noda et al., Phys. Rev. C 83, 034604 (2011)

Operated by Los Alamos National Security, LLC for NNSA

10

Chatillon data will also be reduced due to time resolution. Detector calibration difference needs to be included also.

- Correction will reduce data points above 7 MeV but not so much as Noda data because of better time resolution by Chatillon fission chamber
- Major difference with Noda is in calibration of neutron detector efficiency, which explains why Chatillon < Noda above 7 MeV.

A. Chatillon et al., Phys. Rev. C89, 014611 (2014)

WNR/LANSCE provides neutrons from 100 keV to 200 MeV for PFNS Studies

Fission sample and fission counter (LLNL) to contain ~ 100 mg of ²³⁹Pu

• Parallel-Plate Avalanche Counter (PPAC)

Chi-Nu array of fast neutron detectors measures prompt neutron spectra emitted in fission

- 22 ⁶Li-glass scintillation detectors - - or
- 54 liquid scintillation
 neutron detectors

Double time-of-flight experiment

Neutron detectors – two types

54 Liquid scintillators – 1.0 m flight path

22 ⁶Li-glass scintillators – 0.4 m flight path

PPAC – neutron detector \rightarrow Time of flight (2) \rightarrow Energy of outgoing neutron

Operated by Los Alamos National Security, LLC for NNSA

15

Modeling Neutron Transport in PFNS Experiments Terry Taddeucci

Operated by Los Alamos National Security, LLC for NNSA

16

MCNP simulations have been used to investigate some previous measurements of the PFNS

Two standard papers for ²³⁹Pu:

- P. Staples et al., Nucl. Phys. A591, 41 (1995)
- H.H. Knitter, Atomkernenergie 26, 76 (1975)

Some possible sources of systematic error:

• detector enterency	
 detector efficiency 	
 multiple scattering in the collimation 	these are not necessarily decoupled
 multiple scattering in the target 	

- background subtraction
- Calibrations (TOF, PH, flight path, etc)

Experimental layout for the measurements by Staples et al.

Fig. 1. Experimental arrangement in the target room.

Los Alamos
 NATIONAL LABORATORY

Experimental layout for the measurements by Knitter

M. Coppola and H.H. Knitter, Z. Physik 232, 286 (1970)

Fig. 1. Lay-out of the detecting system

typical for this facility (CBNM, Geel)

Staples:

"Multiple scattering corrections and neutron attenuation corrections have not been performed because the samples are so small that these effects can be neglected."

Knitter:

"The result of the fit gave an average fission neutron energy of

 $<E> = 3/2T = 2.12 \pm 0.01 \text{ MeV}$

This result contains a small calculable systematic error, since the fission neutrons produced in the sample can make secondary interactions with the sample material. Correction calculations were done in the manner described in a previous paper [1]."

[1] Kiefhaber, E., D. Thiem: Panel Proceedings Series, p127, IAEA Vienna (1972)

cf. Islam and Knitter, Nucl. Sci. Eng. 50, 108 (1973)

UNCLASSIFIED

Multiple scattering plays a significant role in the ²³⁹Pu measurements of Knitter

UNCLASSIFIED

Comparison of MCNP calculations to the ²³⁹Pu measurements of Knitter

Target and collimator effects in the ²³⁹Pu data of Staples *et al.*

Target and collimator effects in the ²³⁹Pu data of Knitter

Modeling of Our Present Experiments Terry Taddeucci

Operated by Los Alamos National Security, LLC for NNSA

17

The low-energy part of the PFNS is being measured with an array of ⁶Li-glass detectors

- active thin target (~100 mg)
- many detectors (22)
- open geometry

(no shielding)

The Chi-Nu MCNP model accounts for neutron scattering from all nearby objects

model space $(\Delta x, \Delta y, \Delta z) = 7.5 \times 7.6 \times 6.9 \text{ m}^3 = 393.3 \text{ m}^3$

Los Alamos
 NATIONAL LABORATORY

Multiple scattering is a significant problem for energies < 1 MeV

Multiple scattering effects are more accurately represented by including the detector response

A preliminary comparison of simulation and data shows good agreement

PFNS for ²³⁹Pu(n_{th},f) – Is it a good guide for PFNS in fast-neutroninduced fission?

PFNS for ²³⁹Pu(n_{th},f) – is it a good guide for PFNS in fast-neutron-induced fission?

- Prompt fission neutron spectra have been measured at thermal for ²³⁵U and ²³⁵Pu. Reactions at thermal can be dominated by one or only a few resonances
- Do the data at thermal have any relevance to PFNS for fission induced by higher energy neutrons?
- Zero order analysis look at average number of neutrons emitted in fission. If they vary with incident neutron energy, then there could well be a change in the spectra of emitted neutrons

Are PFNS measured at thermal relevant for higher incident neutrons?

 Nu-bar for ²³⁵U(n,f) has no structure Nu-bar for ²³⁹Pu has a lot of structure

EST.1943

Correlate structure in nu-bar for ²³⁹Pu(n,f) with fission cross section

- Fission cross section from Weston [NSE 115,164 (1993)]
- Subtract a constant (2.82) from nu-bar for clarity of display
- Add spins and parities (all positive) from Mughabghab
 - 0+ resonance shows no effect in nu-bar
 - 1+ resonances show varying effects

Now the good news (maybe)

- Nu-bar at thermal for ²³⁹Pu(n,f) is almost the same as for 1-10 keV. Maybe the thermal neutron PFNS is relevant to higher energies
- Q: Is nu-bar at thermal dominated by the 1⁺ resonance at 0.3 eV ?

EST.1943

Prospects for PFNS measurements with fission induced by epithermal neutrons

- ²³⁹Pu(n,f) for incident neutron energies in resonance region – not planned but would be interesting physics!
 - Note: gamma production from fission in resonance region has been studied. Yes, spectra do depend on incident neutron energy and correlate with variations in nu-bar!

Ref: S. Mosby et al., DANCE collaborations

Fission total γ-ray energy vs. incident neutron energy for ²³⁹Pu(n,f)

- Fluctuations in prompt fission gamma energy anti-correlated with neutron emission
- More detailed information on ²³⁹Pu(n,γf) process (Lynn, 1965)
- Qualitative behavior reported by Shackleton in 1972

Advanced PFNS measurements

 Correlate PFNS with fission products (Z,A) – difficult – could improve models of fission physics

Acknowledgments

 This work is performed under the auspices of the U.S. Department of Energy by

Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

and the Los Alamos National Laboratory under Contract DE-AC52-06NA25396.

Colleagues in PFNS experiments at LANSCE

- <u>LANL</u>: H. Y. Lee, T. N. Taddeucci, J. M. O' Donnell, N. Fotiades, M. Devlin, J. L. Ullmann, T. Bredeweg, M. Jandel, R. O. Nelson, S. A. Wender, D. Neudecker, M. Rising, S. Mosby, S. Sjue, M. White; R. C. Haight
- LLNL: C.-Y. Wu, B. Bucher, R. Henderson
- <u>CEA</u>: T. Ethvignot, T. Granier, A. Chatillon, J. Taieb, B. Laurent, Alix Sardet

