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Microscopic theoretical approaches 

Ab-initio many-body theories 
 Based on elementary interactions 
 Complete and disjointed error estimate 

Test fundamental interactions 
Do not focus on accuracy at first 

Effective many-body theories 
 Based on effective interactions 
 Partial and composite error estimate 

Limited reach 
Controlled extrapolations 

Do not probe fundamental interactions 
Aims at high accuracy around known data 

Extended reach 
Uncontrolled extrapolations 
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Status of ab-initio many-body theories 

Ab-initio many-body theories 
 Effective structure-less nucleons 
 2N + 3N + … inter-nucleon interactions 
 Solve A-body Schrödinger equation 
 Thorough assessment of errors needed 

Controlled extrapolations 
Limited applicability domain  
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Inter-nucleon interactions 
 Link to QCD – cEFT 
[E. Epelbaum, PPNP67, 343 (2012)] 

 Soften through RG  
[S.K. Bogner et al., PPNP65, 94 (2010)] 
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Based on expansion scheme 
 Systematic error 
 Cross-benchmarks needed 

Inter-nucleon interactions 
 Link to QCD – cEFT 
[E. Epelbaum, PPNP67, 343 (2012)] 

 Soften through RG  
[S.K. Bogner et al., PPNP65, 94 (2010)] 

[Dean, Hjorth-Jensen, Piecuch, Hagen, Papenbrock, Roth] 
[Barbieri, Dickhoff] 

[Tsukiyama, Bogner, Schwenk, Hergert] 

[Carlson, Pieper, Wiringa] 
[Barrett, Vary, Navratil, Ormand] 

100Sn 
132Sn 

2003-2014 
CC, Dy-SCGF, IMSRG 

Doubly closed-shell nuclei  
A<132 

1972-2014 
EDF approach 

A>4 
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Ab-initio methods for singly open-shell nuclei 

AO 

ACa 

ANi 

ASn 

First objective: generalize many-body methods to study complete isotopic/isotonic chains 
 From a few 10s of nuclei to several 100s of nuclei = strong overlap with EDF methods 

Nuclear structure at/far from b stability 
 Magic numbers and their evolution? 
 Limits of stability beyond Z=8? 
 Mechanisms for nuclear superfluidity? 
 Role and validation of AN forces? 
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Looking into the next 10 years 

Upcoming generation of RIB facilities 

E.D.F. 

2014 2015 2016 2017 2018 2019 2020 

Improve many-body scheme  

Develop symmetry-restored theories 

Account for the continuum 
long term 

Access doubly-open shell nuclei 

Ab-initio 

long term 

Bridge structure and reactions 

Build well-defined EDF kernels for multi-reference calculations 

Bridge to ab initio reactions 

Build EDF parameterizations  with reduced systematic errors 

Prepared with J.P. Ebran 
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depends on |f0> 

Bulk correlations 
  Param. in 
Vary smoothly with A  

Static correlations 
Breaking symetries 

Vary smoothly with Ash 

Dynamic correlations 
Fluctuations of OP 

Vary quickly with Ash 

Empirical param based on T&E 
*No link with microscopy 
*Uncontrolled extrapolations 
*No clear path for improvement 

MR EDF method ill defined 
*SI and SP contaminations 
*Worse as we enrich it 
*Need microscopic guidance 
[M. Bender, T. Duguet, D. Lacroix, PRC (2009)] 
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*More general: energy dependent 
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Ab-initio optical potential 
*In closed and open shell nuclei 
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State-of-the-art ab-initio calculations 
Binding energy of AO 
 CC, IMSRG, IT-NCSM 
 Emax = 15 HO shells  
 E3max = 14 

In
p
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t 

[H. Hergert et al., PRL 110, 242501 (2013)] 

[A. Cipollone, C. Barbieri, P. Navratil., PRL 111, 062501 (2013)] 

Inter-nucleon interactions 
 Chiral 2N (N3LO ; L2NF = 500 MeV/c) 
[D.R. Entem, R. Machleidt, PRC 68, 041001 (2003)] 

 Chiral 3N (N2LO ; L3NF = 400 MeV/c) 
[P. Navratil, FBS 41, 117 (2007)] 

 SRG evolved down to l = 1.9 fm-1 

Similarly for Dy-SCGF-ADC(3) 



45/49 

State-of-the-art ab-initio calculations 
Binding energy of AO 
 CC, IMSRG, IT-NCSM 
 Emax = 15 HO shells  
 E3max = 14 

In
p

u
t 

[H. Hergert et al., PRL 110, 242501 (2013)] 

[A. Cipollone, C. Barbieri, P. Navratil., PRL 111, 062501 (2013)] 

Inter-nucleon interactions 
 Chiral 2N (N3LO ; L2NF = 500 MeV/c) 
[D.R. Entem, R. Machleidt, PRC 68, 041001 (2003)] 

 Chiral 3N (N2LO ; L3NF = 400 MeV/c) 
[P. Navratil, FBS 41, 117 (2007)] 

 SRG evolved down to l = 1.9 fm-1 

 Original 3N mandatory 
 Correct location of drip-line 

Similarly for Dy-SCGF-ADC(3) 



46/49 

State-of-the-art ab-initio calculations 
Binding energy of AO 
 CC, IMSRG, IT-NCSM 
 Emax = 15 HO shells  
 E3max = 14 

In
p

u
t 

[H. Hergert et al., PRL 110, 242501 (2013)] 
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Inter-nucleon interactions 
 Chiral 2N (N3LO ; L2NF = 500 MeV/c) 
[D.R. Entem, R. Machleidt, PRC 68, 041001 (2003)] 

 Chiral 3N (N2LO ; L3NF = 400 MeV/c) 
[P. Navratil, FBS 41, 117 (2007)] 

 SRG evolved down to l = 1.9 fm-1 

 Original 3N mandatory 
 Correct location of drip-line 

Many-body methods 
 Excellent cross-benchmarks! 
 Converging expansions to ~1% 
 Various systematic errors ~1-2% 

 Omitted induced AN forces 
 Basis truncations (SRG, 3NF, NO2B) 

Similarly for Dy-SCGF-ADC(3) 

[S. Binder et al., PLB 736 (2014) 119] 

l = 2.25 fm-1  
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Towards heavier and open-shell nuclei 

CR-CC(2,3) + SRG 
Emax = 12 HO shells  
E3max = 18 

[S. Binder et al., PLB 736 (2014) 119] Binding energy per particle in closed (sub)shell nuclei up to 132Sn 

From first generation of calculations 
 E/A trend correct from 3NF 
 Systematic over binding by ~1MeV 
 Charge radii consistently too small by ~20% 
 Relative energies satisfactory 
 Magic N=20,28 arise from 3NF but exaggerated 

2N+3N fixed in A ≤ 4 

Go-SCGF(ADC[2]) + SRG 
Emax = 14 HO shells 
E3max = 16 

Two-neutron separation energy along Z=20 

[Somà et al., PRC 89, 061301 (2014)] 

Current Chiral 2NF+3NF put to critical test 
Saturation? High partial waves? Chiral order? D-full?  

Improvements needed on many-body/interactions 
to provide precise enough pseudo-data 

NN+3N 
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Looking into the next 10 years 

Upcoming generation of RIB facilities 

E.D.F. 

2014 2015 2016 2017 2018 2019 2020 

Improve many-body scheme  

Develop symmetry-restored theories 

Account for the continuum 
long term 

Access doubly-open shell nuclei 

Ab-initio 

long term 

Bridge structure and reactions 

Bring know-how from EDF 

Constrain 
phenomenological 
optical potentials 
for extrapolations 

From predictive 
ab-initio 
methods and 
elementary 
inter-nucleon 
interactions 

Build well-defined EDF kernels for multi-reference calculations 

Nuclear pseudo-data 
away from experimentally 
accessible regions 

Bridge to ab initio reactions 

Build EDF parameterizations  with reduced systematic errors 

Utilize know 
how and 
knowledge from 
phenomenology 
to compute ab 
initio optical 
potentials     

Prepared with J.P. Ebran 


