

Potential interplay between ab-initio and energy density functional approaches

Thomas DUGUET

SPhN, Commissariat à l'Energie Atomique, France IKS, KU Leuven, Belgium NSCL, Michigan State University, USA

PND2-2 workshop, October 14-17 2014, Bruyères Le Chatel, France

Introduction

Microscopic theoretical approaches

Ab-initio many-body theories

- Based on *elementary* interactions
- > Complete and disjointed error estimate

Limited reach *Controlled* extrapolations

Test fundamental interactions Do not focus on accuracy at first

Extended reach *Uncontrolled* extrapolations

Do not probe fundamental interactions Aims at high accuracy around known data *Effective* many-body theories

- Based on *effective* interactions
- Partial and composite error estimate

Microscopic theoretical approaches

Ab-initio many-body theories

- > Based on *elementary* interactions
- > Complete and disjointed error estimate

Limited reach *Controlled* extrapolations

Test fundamental interactions Do not focus on accuracy at first

Interesting potential cross-feeding in the next ten years

Extended reach *Uncontrolled* extrapolations

Do not probe fundamental interactions Aims at high accuracy around known data *Effective* many-body theories

- Based on *effective* interactions
- Partial and composite error estimate

Microscopic theoretical approaches

Ab-initio many-body theories

- Based on *elementary* interactions
- Complete and disjointed error estimate

Expertise historically weak in France

Limited reach *Controlled* extrapolations

Test fundamental interactions Do not focus on accuracy at first

Interesting potential cross-feeding in the next ten years

Extended reach *Uncontrolled* extrapolations

Do not probe fundamental interactions Aims at high accuracy around known data *Effective* many-body theories

- Based on *effective* interactions
- > Partial and composite error estimate

Expertise historically strong in France

Ab-initio methods for singly open-shell nuclei

First objective: generalize many-body methods to study complete isotopic/isotonic chains

From a few 10s of nuclei to several 100s of nuclei = strong overlap with EDF methods

^ACa

Nuclear structure at/far from β stability

- Magic numbers and their evolution?
- Limits of stability beyond Z=8?
- > Mechanisms for nuclear superfluidity?
- Role and validation of AN forces?

cea

Ab-initio methods for singly open-shell nuclei

First objective: generalize many-body methods to study complete isotopic/isotonic chains

From a few 10s of nuclei to several 100s of nuclei = strong overlap with EDF methods

Nuclear structure at/far from β stability

- Magic numbers and their evolution?
- Limits of stability beyond Z=8?

Ced

- Mechanisms for nuclear superfluidity?
- Role and validation of AN forces?

Extending existing ab initio methods

Gorkov-SCGF

[V. Somà, T. Duguet, C. Barbieri, PRC 84, 064317 (2011)]

> MR-IMSRG

^ACa

- [H. Hergert et al., PRL 110, 242501 (2013)]
- Bogoliubov CC
- [A. Signoracci, T. Duguet, G. Hagen, unpublished (2014)]
- IMSRG-based valence shell model
- [S. K. Bogner et al., arXiv:1402.1407 (2014)]
- CC-based valence shell model [G. R. Jansen *et al.*, arXiv:1402.2563 (2014)]

Ab-initio methods for singly open-shell nuclei

First objective: generalize many-body methods to study complete isotopic/isotonic chains

From a few 10s of nuclei to several 100s of nuclei = strong overlap with EDF methods

Potential interplay

Looking into the next 10 years

Closed shell

Closed shell

open-shell nuclei

ESNT

ESNT

Target Wave Reference state operator state $\Psi_0 \rangle = \Omega_0 |\Phi_0\rangle$ A-body ground state

open-shell nuclei

ESNT

Looking into the next 10 years

Looking into the next 10 years

ESNT

Introduction to RI Beam Factory and Users' Information

35/49

[V. Somà, T. Duguet, C. Barbieri, PRC 84, 064317 (2011)]

[V. Somà, T. Duguet, C. Barbieri, PRC 84, 064317 (2011)]

Dressed 1-body Gorkov
Green's function

$$G_{ab}(\omega) = G_{ab}^{(0)}(\omega) + \sum_{cd} G_{ac}^{(0)}(\omega) \Sigma_{cd}(\omega) G_{db}(\omega)$$

$$\Sigma_{ab}(\omega) \equiv \begin{pmatrix} \Sigma_{ab}^{11}(\omega) & \Sigma_{ab}^{12}(\omega) \\ \Sigma_{ab}^{21}(\omega) & \Sigma_{ab}^{22}(\omega) \end{pmatrix}$$
Irreducible self energy
 $\omega < 0$

Bound 1-nucleon +/- energies

$$E_k^{\pm} \equiv \pm \left(E_k^{\mathrm{A} \pm 1} - E_0^{\mathrm{A}} \right)$$

[V. Somà, T. Duguet, C. Barbieri, PRC 84, 064317 (2011)]

[C. Mahaux, R. Sartor, ANP 20, 1 (1991)]

Ab-initio Gorkov self-consistent Green's function theory

[V. Somà, T. Duguet, C. Barbieri, PRC 84, 064317 (2011)]

Ab-initio Gorkov self-consistent Green's function theory

[V. Somà, T. Duguet, C. Barbieri, PRC 84, 064317 (2011)]

Ab-initio Gorkov self-consistent Green's function theory

[V. Somà, T. Duguet, C. Barbieri, PRC 84, 064317 (2011)]

Looking into the next 10 years

ESNT

Introduction to RI Beam Factory and Users' Information

Looking into the next 10 years

ESNT

Introduction to RI Beam Factory and Users' Information

State-of-the-art *ab-initio* calculations

State-of-the-art *ab-initio* calculations

State-of-the-art *ab-initio* calculations

[S. Binder et al., PLB 736 (2014) 119] 46/49

Towards heavier and open-shell nuclei

Two-neutron separation energy along Z=20

From first generation of calculations

- E/A trend correct from 3NF
- Systematic over binding by ~1MeV
- Charge radii consistently too small by ~20%
- Relative energies satisfactory
- Magic N=20,28 arise from 3NF but exaggerated

Current Chiral 2NF+3NF put to critical test *Saturation? High partial waves? Chiral order?* Δ *-full?*

Improvements needed on many-body/interactions to provide *precise enough pseudo-data* 47/49

Looking into the next 10 years

ESNT

Introduction to RI Beam Factory and Users' Information

48/49

Looking into the next 10 years

Prepared with J.P. Ebran

49/49