Microscopic description of the fission

Self-consistent adiabatic description of the fission: automatic production of class-II PES

N. Dubray

CEA. DAM. DIF

 $P(ND)^{2}-2$

Table of contents

- Microscopic description of the fission
- 3 Problems with the self-consistency
- Toward class 3 PESs
- Conclusions

Table of contents

- Microscopic description of the fission

Microscopic description of the fission

Two-step approach:

- Production of microscopic potential energy surfaces (PES)
 - Hartree-Fock-Bogoliubov code using a two-center oscillator basis
 - effective nucleon-nucleon interaction Gogny D1S
 - N-dimensional PFSs
 - results : static properties of the fragments
- Wave packet propagation
 - TDGCM method with GOA
 - initial state : eigenstate of an extrapolated first well
 - microscopic inertia tensor (GCM)
 - results: statistic properties of the fragments

Formalism - HFB2CT

$$\delta \langle \varphi | \hat{H} - \lambda_N \hat{N} - \lambda_Z \hat{Z} - \sum_i \lambda_i \hat{Q}_{i0} | \varphi \rangle = 0$$

Constrained Hartree-Fock-Bogoliubov method:

- D1S Gogny parametrization
- self-consistent mean and pairing fields
- two-center harmonic oscillator basis

Constraints:

neutron and proton numbers N et Z

$$\langle \varphi | \hat{\mathbf{N}} | \varphi \rangle = \mathbf{N}$$

 $\langle \varphi | \hat{\mathbf{Z}} | \varphi \rangle = \mathbf{Z}$

- q₁₀ to avoid spurious center of mass motion
- multipolar moments q_{i0}

$$\langle \varphi | \hat{Q}_{i0} | \varphi \rangle = q_{i0}$$

Formalism - TDGCM + GOA

General GCM state with N different degrees of freedom $\{q_1, \ldots, q_N\}$:

$$|\psi(t)
angle \equiv \left(\prod_{i}^{N}\int dq_{i}
ight)f(q_{1},\ldots,q_{N},t)|\phi(q_{1},\ldots,q_{N})
angle$$

Variational principle:

Microscopic description of the fission

0000000

$$\frac{\partial}{\partial f^*} \int_{t_1}^{t_2} \langle \psi(t) | \left(\hat{H} - i\hbar \frac{\partial}{\partial t} \right) | \psi(t) \rangle = 0$$

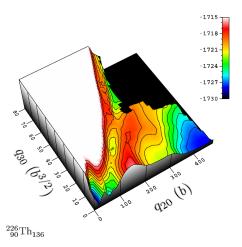
Using the Gaussian Overlap Approximation (GOA), we obtain a Schrödinger-like equation:

$$\hat{H}_{\mathrm{coll}}g(t)=i\hbarrac{\partial}{\partial t}g(t)$$

with

$$\hat{H}_{\text{coll}} = -\frac{\hbar^2}{2} \sum_{i,j}^{N} \frac{\partial}{\partial q_i} B^{ij} \frac{\partial}{\partial q_j} + \hat{V}$$

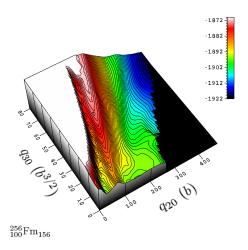
Results - PESs



Results - PESs

Microscopic description of the fission

000000

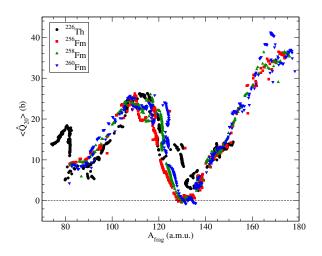


N. Dubray et al., Phys. Rev. C 77, 014310 (2008).

Results - Fragment deformation $\langle \hat{Q}_{20} \rangle$

Microscopic description of the fission

0000000



Results - Fragment mass distribution for ²³⁸U

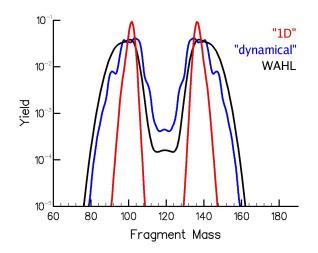


Table of contents

- Microscopic description of the fission
- 2 3 Problems with the self-consistency
- 3 Toward class 3 PESs
- 4 Conclusions

Problem 1 - Convergence

- Problem: the HFB solver does not converge to a solution.
- Consequence: the HFB solution is bad.
- Symptom: the convergence quantity is too high.

Microscopic description of the fission

- Problem: the HFB solver does not converge to a solution.
- Consequence: the HFB solution is bad.
- Symptom: the convergence quantity is too high.

Problem 2 - Minimization

- Problem: the HFB solver converges to a local minimum.
- Consequence: the HFB solution is bad.
- Symptom: none at the time of calculation.

Problem 1 - Convergence

- Problem: the HFB solver does not converge to a solution.
- Consequence: the HFB solution is bad.
- Symptom: the convergence quantity is too high.

Problem 2 - Minimization

- Problem: the HFB solver converges to a local minimum.
- Consequence: the HFB solution is bad.
- Symptom: none at the time of calculation.

Problem 3 - Discontinuity

- Problem: two solutions close in the constraint deformation subspace are not close in the full deformation space.
- Consequence: a dynamic description using these points is missing a part of the physics (wrong barrier, saddle point, ...).
- Symptom: none easily visible.

PES classes

Class	Convergence	Minimization	Discontinuity
0	problem ?	problem ?	problem ?
1	OK	problem ?	problem?
2	OK	OK	problem ?
3	OK	OK	OK

The density-distance operator

Microscopic description of the fission

We define the density-distance operator

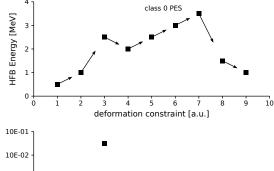
$$D_{
ho
ho'}(|\psi
angle,|\psi'
angle) \equiv \int \mathrm{d} au^3 |
ho(ec{r})-
ho'(ec{r})|$$

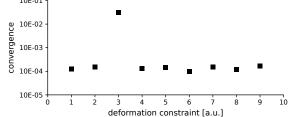
where $\rho(\vec{r})$ and $\rho'(\vec{r})$ are the total local densities of the states $|\psi\rangle$ and $|\psi'\rangle$.

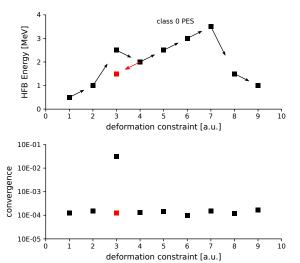
4-lines long algorithm to clean a PES

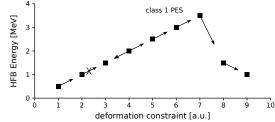
- all solutions with a too high convergence value are marked as "bad".
- all solutions with a too high maximum density distance value AND with their energy being higher than the corresponding partner's energy are marked as "bad",
- all solutions marked as "bad" are recalculated from the neighboring solution with the lowest energy that has not been used for the same calculation before.
- recalculate the density distances and restart.

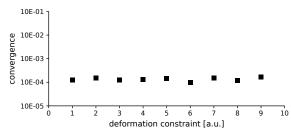
- this algorithm can be used during or after the production of a N-dimensional PES.
- if there is no fatal convergence problem and if all valleys have been discovered, the result is at least a class 2 PES.

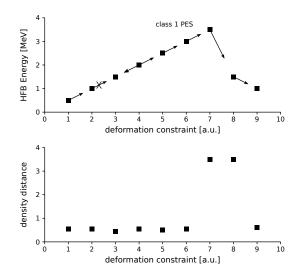


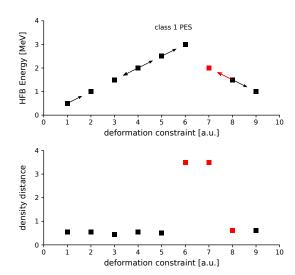


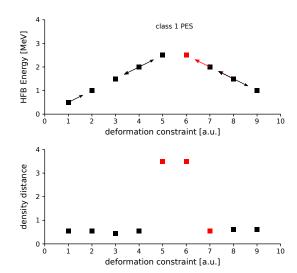


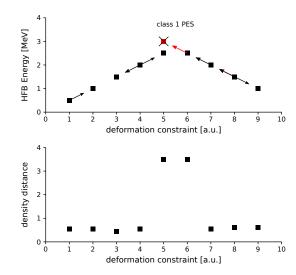


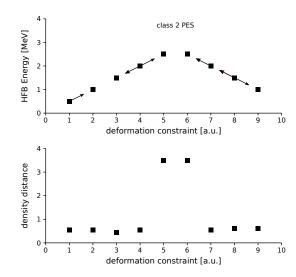


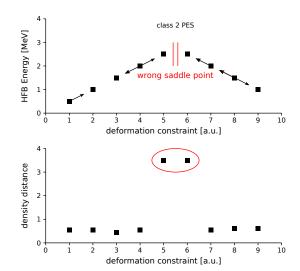












Important remark

We call a final point a solution that does not change when taking a bigger deformation subspace with the same symmetries.

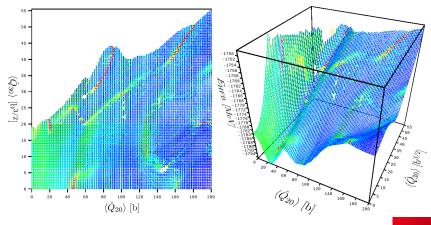
If there has been no fatal convergence problem and if all valleys have been discovered,

- a class 2 PES can have wrong or missing saddle points,
- a class 3 PES has only final points (minima, saddle points, etc...).

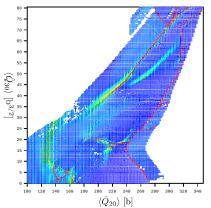
N. Dubray and D. Regnier, Comp. Phys. Comm. 183, 2035 (2012)

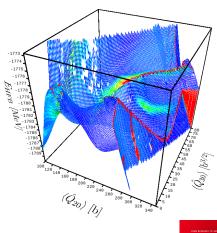
- 1- and 2-center PESs for ²³⁸U.
- fully automatic production.
- class 2 PES enforced.
- basis-distance used in conjunction with density-distance.

1-center PES of ²³⁸U - class 2 / 3?



2-center PES of ²³⁸U- class 2 / 3?





Toward class 3 PESs

Table of contents

- Toward class 3 PESs

Microscopic description of the fission

Continuous regular mesh?

- dimension of a class 3 PES: N = 1, 2, 3, 4, 5, 6, ...?
- regular mesh + hypercube + N > 2 = huge number of points N_p
- dimension of the TDGCM + GOA hamiltonian matrix: N₀²

Use a sparse mesh!

- no hypercube, focus on the physics in any dimension
- optimal number of points
- solve the TDGCM + GOA equation with FEM

Class 3 PES (q_{20},q_{30},q_{40}) for 240 Pu

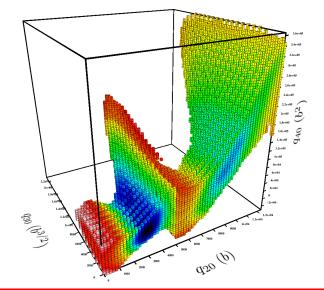


Table of contents

- Conclusions

- Producing class 2 PESs is easy and can be automatic.
- Class 0,1,2 PESs can have non-final points.
- A class 3 N-dimensional PES has the same saddle points, paths... as any extended (N + x)-PES (since all points are final points).

Perspectives - fission description

In a near future, we plan to have

- a fully-automatic production of class 3 sparse N-PESs,
- a code to solve the TDGCM + GOA equation on sparse N-PESs with FEM (WIP by D. Regnier).

Next step: find the lowest *N* value for a given class 3 *N*-PES.

