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 Reactor context : 
PWR, BWR ; thermal and epithermal energy range 
FR ; epithermal and fast range 
Needs of reliable Uncertainties (not too optimistic/ not too pessimistic) 
 

 Objectives/perspectives 
Proper link between Resonance range and continuum 
Take benefit of nuclear reaction models progress in high energy range 
Increase physical contents of resonance parameters 
Get rid of some “free” parameters 
Find guidelines for new evaluation 
Avoid compensations (Fresnel representation of Morillon) 

 

General Actual Framework 
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* Lane and Thomas for details : Rev. Mod. Phys. 30 (2) p.275 (1958) 
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General Hypothesis 
I. Non-relativistic Quantum Mechanics 

II. Only process with two product nuclei 

III. No processes of creation/destruction 

IV. Channel c = {Jπ ,α1α2,{qi}}  

V. For r>ac (in configuration space) : V=V(r) 

Additional Considerations in RRR  
A. Compound nucleus 

B. Potential square well (Hard sphere) 

C. Level Approximations (Breit-Wigner, Reich-Moore) 

D. Fission ; Capture 

E. Averaged R-Matrix URR 
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+    γ’s / Eλ are real numbers independent of E + Physical Meaning of ’s 
       

 

      VERY SUCCESSFUL : 233238U, 238242Pu; 56Fe, 16O, 23Na, Fission products …etc  
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Step Forwards 

for Cross Section 

evaluation in the 

resonance range 

 

 

What about Optical 

Potential in the 

Resonance range ? 
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Collision Matrix  

                                                  where                            

 
Penetrability  is calculated via a  

potential square well for entrance channel  

(neutron most of the time)  

+Coulomb barrier for charged particles 

 

Effect of a diffuse edge optical potential ?* 
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and several Boundary cond. 
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Averaged Collision Matrix (over a limited energy domain) 

0

02

2
1

2
1

P

PES
RiP

P

PES
RiP

eU
Lc

cL

Lc
cL

i
c

c
















Phase Shift 

depends on ac  

Penetrability  

depends on ac 

In R-Matrix ; ac is arbitrary  

Choose to give ac a proper physical interpretation  

using models coming from high energy 

No direct reaction contributions 

considered here 

(absorption) 

Is it working ?  look at Unresolved resonance range 
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coming from optical model calculations 

241Am+n 
Choice of channel radius ac 

Forward : from OM to R-Matrix 
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241Am+n 
Choice of channel radius ac 
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Choice of channel radius ac 

Forward : from OM to R-Matrix 
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Choose  ac  using phase shift c  

coming from optical model calculations 

241Am+n 
Choice of channel radius ac 

Forward : from OM to R-Matrix Backward Verify ac choice  

with transmission factor Tc 
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Choice of channel radius ac 

Forward : from OM to R-Matrix Backward Verify ac choice  
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Choose  ac  using phase shift c  

coming from optical model calculations 

241Am+n 
Choice of channel radius ac 

 Very good agreement between ECIS and « hard sphere » up to  200-300 keV 

 Different ac for different orbital momenta  

Forward : from OM to R-Matrix Backward Verify ac choice  

with transmission factor Tc 
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Find Strenght functions and R with SPRT* 

241Am+n 

a0=9.52 fm 

a1=7.20 fm 

a2=8.76 fm 

a0=8.46 fm 

a1=8.46 fm 

a2=8.46 fm 

Equivalent hard-sphere radius 

ac comming from c 

Confirmation of empirical rule (F. Frohner, O. Bouland, NSE, 2001) S0  S2cst 

Convention ENDF-6 

00 


R

2

0
'4)(lim RE

ce
E

p  


000 ')1(' aRRaR 


                 Effective Radius R’ equal to channel radius (Averaged R-Matrix formalism)  

  
00 



R

241Am+n 

*Delaroche et Lagrange (IAEA-190, 1976) 

*E.Rich et al. NSE, 162 (2009) 76-86 
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Apply equivalent methods to Resolved Resonance range 

Phase 

Shift 

depends 

on ac  

Penetrability  

depends on 

ac 
In R-Matrix ; ac is arbitrary  

Choose to give ac a proper physical interpretation  

using models coming from high energy 

 

Allow a coherent treatment from 0eV to 20 MeV  

for penetrability and various radius 

Amplitude with more physics Statistics  

 

Fertile nuclei ok ; What about fissile nuclei ? 
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for Cross Section 

evaluation in the 

resonance range 

 

 

What about Fission in 

the Resonance Range? 
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FISSION 

 
In the Unresolved resonance 

range and Continuum 

Fission Barriers calculations 

used for  

Transmission coefficient  

 
2, nf

fn

fn W
T

TT

k







Simple Cramer-Nix Barrier  

+ Fission ingredients  

(J,K, Rotational band, class II, etc …) 

? 

@Lynn 

Fission barriers calculation in  

the Resolved Resonance Range ? 

n+240Pu 
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      Numerical solution of       two information  

       can be extracted: 

 

•Probability current and transmission 

coefficient 

 

 

 

 

 

 

 

 

•Shift and penetration factors 

  

V(µ)(η) ; η characterizes a collective fission coordinate (e.g. Q2, ß2, …) 

  

EXAMPLE OF EXPLICIT TREATMENT OF THE FISSION BARRIER 

* Lynn for details : J. Phys. A. : Math. Nucl. Gen. 6 p.542 (1973) 
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V(µ)(η)  

EXAMPLE OF EXPLICIT TREATMENT OF THE FISSION BARRIER 
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EXAMPLE OF EXPLICIT TREATMENT OF THE FISSION BARRIER 

Example: 240Pu+n: 
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EXAMPLE OF EXPLICIT TREATMENT OF THE FISSION BARRIER 

Example: 240Pu+n: 
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Class II state, located in an 

intermediate well ? 
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EXAMPLE OF EXPLICIT TREATMENT OF THE FISSION BARRIER 

Example: 240Pu+n: 
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Class II state, located in an 

intermediate well ? 

240Pu 2nd Perspective 

Benefit from 

phenomenological 

or microscopic 

models  



Generic issues for defining fission channels:  
Reich-Moore allows a good description of fission 
For Heavy Nuclei ; 1 radiative capture channel with  
Hypothesis: many photons interferences cancel out 

  
      

 
 
      

  
Fission channels allow fission interference  
No fundamental physical meaning 


239Pu 

 
0+
 2 Fission channels 

1+
 1 Fission channel 

 

Statistics ?  ; νeff  ??? ; (n,f) process ? 
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FISSION ANALYSIS IN RESOLVED RESONANCE RANGE 

TOWARDS BETTER EVALUATION OF FISSION WIDTHS 
 

Use an additional quantum number*   K (proj. of J on the fission axis) 

Fission channels defined by cf,K = {Jπ ,fission,{K}} 

 

 

 
Need of new experiments:  

 Polarized neutron/target 

 Angular Distribution of F.F. 
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* W.I. Furman: FJ/OH Spring Session’99, Neutron data measurements & evaluation May 17 1999, Geel 

Γcf,K 

For 235U :  

some experiments 
N.J. Pattenden et al.; Nucl. Phys. A 167  (1971) 

G.A. Keyworth et al.;Conf. On nuclear cross section and technology,  

Washington D.C., USA, NBS Special Publication 425 (1975) p.576 

few evaluations 
M.S. Moore, L.C. Leal, et al., Nulc. Phys. A 502 (1989) 

 

Development in Analysis codes:  
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K contributions 

Angular Distribution of fission fragments 

Evaluation in Resonance Range 
Disentangle fission channels 

Evaluation of J,  K and  



FISSION ANALYSIS IN RESOLVED RESONANCE RANGE 

TOWARDS BETTER EVALUATION OF FISSION WIDTHS 
 

Use an additional quantum number*   K (proj. of J on the fission axis) 

Fission channels defined by cf,K = {Jπ ,fission,{K}} 
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Investigation of the two-step (n,f) process* 

Still a topic of discussion   

No direct measurements of this reaction  challenge 

WPEC/SG34 provides some recent explanations for 239Pu 

 

 

 

 

 

 

 

 

 

 

 

Future evaluation artworks on 239Pu and others  include explicitly the two-step 

(n,f) reaction (additional dedicated partial reaction width, f); usual fitted fission 

width becoming clear one-step fission component only. 
* E. Lynn, Rev. Mod. Phys. 52 (1980) 
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Future evaluation artworks on 239Pu and others  include explicitly the two-step 

(n,f) reaction (additional dedicated partial reaction width, f); usual fitted fission 

width becoming clear one-step fission component only. 

3rd Perspective: 3.2  

* E. Lynn, Rev. Mod. Phys. 52 (1980) 

FISSION ANALYSIS IN RESOLVED RESONANCE RANGE 

TOWARDS BETTER EVALUATION OF FISSION WIDTHS 
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for Cross Section 
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resonance range 
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Uncertainties from the 

Resonance Range to 

the Continuum? 
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Issues : 
Systematic experimental uncertainties  

Phenomenological Nuclear reaction model theories + Parameters 

Model defects (Syst. Uncertainties) 

Integral experiment assimilation 

Common Physics from RRR to Continuum (previous slides) 

Microscopic and 

Integral 

Experiments 

Theoretical 

background 

Models + 

Parameters 

Cross sections 

knowledge and 

uncertainties 

Bayes 

CROSS SECTIONS “KNOWLEDGE” 

EVALUATION IN THE RESONANCE RANGE AND HIGHER  
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Bayesian inference 
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@ P. Schillebeeckx 

Bayesian inference 
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Meta-Model from 0eV to 200MeV: 

 
 
 
 
 
 
 
 

How to deal with it ? 
Several teams with internal constraints 
Several analysis methodologies  

Solutions : 
Share Physics (see previous slides)  

 coupling between RRR/URR/Continuum 
External constraints (Experiments ; Mathematics) 
Extensive use of Monte-Carlo / look at pdf’s 
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IMPOSING CONSTRAINTS ON SEVERAL MODELS   

GENERAL DESCRIPTION 



 

Unified model on an energy domain  

 
[EL, ER] + Boundary at EC:  
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 Given a microscopic experiment with statistical and systematic uncertainties on [EL,ER] 

See effect of systematic uncertainties on nuclear model parameters  
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See effect of constraint on cross section 

 

                                                               

                                                                   

 

  

 

26 NOVEMBRE 2014 |  PAGE 28 

IMPOSING CONSTRAINTS ON SEVERAL MODELS   

GENERAL DESCRIPTION 

Two models 

Used on two separated energy domains 

 

@ 



 

Unified model on an energy domain  

 
[EL, ER] + Boundary at EC:  

 

 

 

 

 

 

 Given a microscopic experiment with statistical and systematic uncertainties on [EL,ER] 

See effect of systematic uncertainties on nuclear model parameters  

See effect of systematic uncertainties on cross section  

 

 

Imposing constraints on boundary EC: 

Mathematical framework 

Cross sections continuity 

See effect of constraint on cross section 

 

Use of Integral experiments impacting several energy domains: 

See effect of Integral Data Assimilation on cross sections/models 
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GENERAL DESCRIPTION 
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Used on two separated energy domains 

 

@ 



Nuisance parameters are necessary during comparisons with experiments  (data 
reduction, normalization,…), but not for the final evaluation 

Marginalization philosophy 

Model  
parameters 

« nuisance» 
parameters 

Marginalization :   

estimation of the first two moments of the marginal probability density 

Marginalization of the probability density: 

+ Covariances 

),|,(=),|( UyxpdUyxp
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CONSTRAINTS :  

INTEGRAL/MICROSCOPIC EXPERIMENTS  
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IMPOSING CONSTRAINTS ON SEVERAL MODELS   

SYST. EXP. UNCERTAINTIES; 23NA EXAMPLE 



 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

                                 

                                     

                              

                                      

 

   

 

 

Didactic example : Sodium inelastic cross sections  

Energy Range studied [1.9 – 2.1 MeV] ; Boundary at 2 MeV. 

Below 2 MeV : Resolved resonance range (Jeff3.2) 

Above 2 MeV : Jeff3.2 (Optical Potential + Partial models) 
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“Simulated” experimental Data : 

Based on theoretical points (red)   

3% statistical uncertainties 

No/0.5/1/3% systematic uncertainties 

 

  

 

 

Didactic example : Sodium inelastic cross sections  

Energy Range studied [1.9 – 2.1 MeV] ; Boundary at 2 MeV. 

Below 2 MeV : Resolved resonance range (Jeff3.2) 

Above 2 MeV : Jeff3.2 (Optical Potential + Partial models) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(n, n’ ) 

Reduced Scattering Radius (r0) 

Diffusiveness (a0) 
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SYST. EXP. UNCERTAINTIES; 23NA EXAMPLE 

4.1th Perspective 

Analysis of wide 

range experiments  
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Syst. Uncertainty  

Tends to ensure cross section continuity 

1st  attempt with normalization  

 Generalize to other experimental  

(background, resolution parameters., isotopic concentration) 
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IMPOSING CONSTRAINTS ON SEVERAL MODELS   

SYST. EXP. UNCERTAINTIES; 23NA EXAMPLE 

4.1th Perspective 

Analysis of wide 

range experiments  

 

 

 

“Real” Evaluation done for time being 

JEFF3.2 23Na 

Based on new (n,n’) measurements* 

(Syst. Unc. 2.6%) 

 

 

 

 

*Rouki et al., NIM in Physics Research Section A, 672 (2012) 
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LAGRANGE MULTIPLIERS 
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Lagrange Multipliers Constraints 



 

 

Simple Mathematical description 

Difficult Mathematical resolution 

Based on Uzawa algorithm 

Slow convergence  

Constraints calculations  time consuming  
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Lagrange Multipliers Constraints 

4.2th Perspective 

Impose constraints 
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IMPOSING CONSTRAINTS 

ON SEVERAL MODELS : URANIUM 238 EXAMPLE 

 

Didactic example : Uranium Total cross section  

Energy Range studied [25 – 750 keV] ; Boundary EC at 150 keV. 

Below 150 keV : Average R matrix 

Above 150 keV : Average R matrix or Optical Potential 

 

Considered parameters : 

Unresolved Resonance Range :  Effective Radius (R’), Strength (Sl=0,1), Distant level (R∞
l=0,1 ) 

Optical Model :    Reduced Scattering Radius (r0) and Diffusiveness (a0) 

 

Considered Constraint on Cross sections at EC : 

 

 “Real” experimental Data : 

Based on C.A.Uttley et al., 1966 

1% statistical uncertainties 

No systematic uncertainties 

 

 

IMPOSING CONSTRAINTS ON SEVERAL MODELS   

LAGRANGE MULTIPLIERS ; 238U EXAMPLE 

Difficulty arises if : 

Parameters are not well chosen 

Boundary is not well chosen : too high 

or too low making one model outside 

its scope 

There are Model defects  
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 What ever is the methodology  and x are considered as random variables (pdf) 

 

   Monte-Carlo Sampling is a natural ingredient 

 

Estimation of Uncertainties with Monte-Carlo during the evaluation process *: 
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calculation of Likelihood  
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*R. Capote and D. Smith, Nucl. Data Sheets 109, 2768 (2008) 

* and **C. De Saint Jean et al., Nuc. Sci. Eng., 161, 363 (2009). 

** P. Schilleebeck et al., Nucl. Data Sheets (to be published)  
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5th Perspective 

 

Sample of                          

 

For each   

calculation of Likelihood  
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UMC for the whole energy range  

with integrated analysis tools  

covering [0eV ; 200MeV] 

With shared Physics (parameters) 

With constraints 

With Experiments  

 Treatment of Experimental parameters  

and marginalisation** (“get rid of them properly”) 

FULL BAYESIAN** 
*R. Capote and D. Smith, Nucl. Data Sheets 109, 2768 (2008) 

* and **C. De Saint Jean et al., Nuc. Sci. Eng., 161, 363 (2009). 

** P. Schilleebeck et al., Nucl. Data Sheets (to be published)  



 
 
 

 
What about propagation of uncertainties and/or integral data assimilations ? 
 
 
 
 
 
 
 

 
 

Need of a new generation of simulation codes : 
Need of Integrated tools : Nuclear reaction codes ; data treatment codes ; 
transport codes (Analog Monte-Carlo simulation,…) 
Need of “parallelized” codes HPC horizon (for example Conrad is multi-
threaded) 

Use Pdf of parameters  ; Sampling bunch of random numbers (1000 is a magic 
number ?) ; Statistical methods ; correlations (Cholesky) ;   
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+ 

Covariances  

 ,... ,, FissionOMPRRRx 
  

Neutron/Gamma 

Transport 

 

UNCERTAINTIES  AND INTEGRAL EXPERIMENTS? 

 

Data Processing 

 

  ,...),,,,( ji fissionOMURRRRRn xxxxE
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Integral Data  

Assimilation 

on Parameters 

 

*Palmiotti et al., J. Korean Phys. Soc., 59, 1123 (2011)  ; C. De Saint Jean et al., J. Korean Phys. Soc., 59, 1276 (2011) ;  

Koning et al. (TMC papers) ; E. Bauge (Forward-Backward papers) 
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Need of “parallelized” codes HPC horizon (for example Conrad is multi-
threaded) 

Use Pdf of parameters  ; Sampling bunch of random numbers (1000 is a magic 
number ?) ; Statistical methods ; correlations (Cholesky) ;   
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6.2 HPC for 
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*Palmiotti et al., J. Korean Phys. Soc., 59, 1123 (2011)  ; C. De Saint Jean et al., J. Korean Phys. Soc., 59, 1276 (2011) ;  

Koning et al. (TMC papers) ; E. Bauge (Forward-Backward papers) 



 
Evaluation libraries are judged to their ability to reproduce public benchmark 
(ICSBEP,IRPHE,…) 
Some of these benchmarks are even used as judged of a single evaluation 
(JEZEBEL) 
Consistent Nuclear Data Evaluation ; Integral Data Assimilation * 
 

 
 
 
 
 
 
 

 
 
Generalization ; extensive use of Monte-Carlo  neutron transport code 
(MCNP,Tripoli4,…) 
Use Pdf of parameters (HPC) 
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Transport 

 

6th Perspective 
6.1 IDA of Int. Experiments 

6.2 HPC for Reactors !  

*Palmiotti et al., J. Korean Phys. Soc., 59, 1123 (2011)  ; C. De Saint Jean et al., J. Korean Phys. Soc., 59, 1276 (2011) 
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“Public” Integral Experiments  

ICSBEP (JEZEBEL) 

Nuclear model parameters Data Assimilation  ,... , FissionOMPx 


Multigroup cross section Data Assimilation 
r

g

Correlation Matrix  

almost equivalent 

|C(paramg) – C(g)|max~0.1 

Consistent 
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239PU COVARIANCE MATRICES 

Multigroup cross section Data Assimilation 
TRENDS 
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239PU COVARIANCE MATRICES 

Additional Integral Experiments  

CERES Program in 

MINERVE/DIMPLE 

Multigroup cross section Data Assimilation 
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 Several kind of Nuclear Data 
 Several kind of Nuclear Reaction Models 
 Several kind of Experiments 
 Several kind of Covariance Matrices 
 
 Progress on Methodologies needed:  

o Data assimilation techniques 
o Adding physical constraints (On several models) 
 

 Progress on Experiments needed: 
o Reduction of systematic uncertainties for microscopic measurements 
o Integral experiments to target limited energy domain / reactions / isotopes 
 

 Progress on Nuclear models needed: 
o Share Common physic features  
o Microscopic models  
o Avoid compensations 
 

 Needs to define Covariance estimation benchmarks: 
o Fixed experiments 
o Fixed a priori (on parameters and/or cross section & uncertainties) 
o Incremental complexity 
o Compare covariance evaluation methodologies 
 

 

CONCLUSIONS 

|  PAGE 84 



 
 Several kind of Nuclear Data 
 Several kind of Nuclear Reaction Models 
 Several kind of Experiments 
 Several kind of Covariance Matrices 
 
 Progress on Methodologies needed:  

o Data assimilation techniques 
o Adding physical constraints (On several models) 
 

 Progress on Experiments needed: 
o Reduction of systematic uncertainties for microscopic measurements 
o Integral experiments to target limited energy domain / reactions / isotopes 
 

 Progress on Nuclear models needed: 
o Share Common physic features  
o Microscopic models  
o Avoid compensations 
 

 Needs to define Covariance estimation benchmarks: 
o Fixed experiments 
o Fixed a priori (on parameters and/or cross section & uncertainties) 
o Incremental complexity 
o Compare covariance evaluation methodologies 
 

 

CONCLUSIONS 

|  PAGE 85 

1 ;2 ;3  

Perspectives 



 
 Several kind of Nuclear Data 
 Several kind of Nuclear Reaction Models 
 Several kind of Experiments 
 Several kind of Covariance Matrices 
 
 Progress on Methodologies needed:  

o Data assimilation techniques 
o Adding physical constraints (On several models) 
 

 Progress on Experiments needed: 
o Reduction of systematic uncertainties for microscopic measurements 
o Integral experiments to target limited energy domain / reactions / isotopes 
 

 Progress on Nuclear models needed: 
o Share Common physic features  
o Microscopic models  
o Avoid compensations 
 

 Needs to define Covariance estimation benchmarks: 
o Fixed experiments 
o Fixed a priori (on parameters and/or cross section & uncertainties) 
o Incremental complexity 
o Compare covariance evaluation methodologies 
 

 

CONCLUSIONS 

|  PAGE 86 

1 ;2 ;3  

Perspectives 

4 ; 5 ; 6 

Perspectives 



 
 Several kind of Nuclear Data 
 Several kind of Nuclear Reaction Models 
 Several kind of Experiments 
 Several kind of Covariance Matrices 
 
 Progress on Methodologies needed:  

o Data assimilation techniques 
o Adding physical constraints (On several models) 
 

 Progress on Experiments needed: 
o Reduction of systematic uncertainties for microscopic measurements 
o Integral experiments to target limited energy domain / reactions / isotopes 
 

 Progress on Nuclear models needed: 
o Share Common physic features  
o Microscopic models  
o Avoid compensations 
 

 Needs to define Covariance estimation benchmarks: 
o Fixed experiments 
o Fixed a priori (on parameters and/or cross section & uncertainties) 
o Incremental complexity 
o Compare covariance evaluation methodologies 
 

 

CONCLUSIONS 

|  PAGE 87 

7th  

Perspective 

1 ;2 ;3  

Perspectives 

4 ; 5 ; 6 

Perspectives 

8th  

Perspective 



 
 

 

OTHER PERSPECTIVES 

|  PAGE 88 

1. Other theories (S,K,… ?) 

2. Reich-Moore alternatives / Progress for  Fission 

3. Resonance shape analysis with double differential data   

(sodium/Fe/U,Pu,etc…)  

4. Direct reaction treatment even in RRR 

5. Microscopic Measurement  : 

a)  Systematic uncertainties 

b) Long range experiments (from RRR to Continuum) 

c) Cold/hot experiments (few K to 1000 K) 

d) Surrogate 

e) Multi-Observables  

I. fission+Capture, Fission xs / Fission yields ;  

II. Spectra … 

6. Microscopic theories 

7. …………………………………. 
  


