

From low to high energy nuclear data evaluations Issues and perspectives on nuclear reaction models and covariances

Cyrille DE SAINT JEAN, Gilles NOGUERE and Pierre TAMAGNO

With contributions of : Pascal ARCHIER, Olivier BOULAND, Edwin PRIVAS, Olivier SEROT

CEA, DEN-Cadarache, F-13108 Saint-Paul-lez-Durance, France

P(ND)²-2, October 14-17, 2014, Bruyères-Le-Châtel (France)

www.cea.fr

State of the art of methodologies for Cross Section evaluation in the resonance range

www.cea.fr

General Actual Framework

DE LA RECHERCHE À L'INDUSTRI

General Actual Framework

General Actual Framework

Reactor context :

- PWR, BWR ; thermal and epithermal energy range
- FR ; epithermal and fast range
- Needs of reliable Uncertainties (not too optimistic/ not too pessimistic)

Objectives/perspectives

- Proper link between Resonance range and continuum
- Take benefit of nuclear reaction models progress in high energy range
- Increase physical contents of resonance parameters
- Get rid of some "free" parameters
- Find guidelines for new evaluation
- Avoid compensations (Fresnel representation of Morillon)

NUCLEAR REACTION THEORIES R-MATRIX THE ORIGIN

General Hypothesis

- I. Non-relativistic Quantum Mechanics
- II. Only process with two product nuclei
- III. No processes of creation/destruction
- IV. Channel $c = \{J^{\pi}, \alpha_1 \alpha_2, \{q_i\}\}$
- V. For $r > a_c$ (in configuration space) : V = V(r)

Additional Considerations in RRR

- A. Compound nucleus
- B. Potential square well (Hard sphere)
- C. Level Approximations (Breit-Wigner, Reich-Moore)
- D. Fission ; Capture
- E. Averaged R-Matrix \rightarrow URR

R-Matrix

$$R_{ab} = \sum_{\lambda} \frac{\gamma_{a\lambda} \times \gamma_{b\lambda}}{E - E_{\lambda}}$$

Collision Matrix *

$$U_{ab} = e^{i(\Omega_a + \Omega_b)} (\delta_{ab} (1 - 2iP_a / L_a) + 2i\sqrt{P_a} (I - RL)_{ab}^{-1} \sqrt{P_b} / L_b) = e^{i(\Omega_a + \Omega_b)} (\delta_{ab} + i\sum_{\lambda\lambda'} \Gamma_{\lambda a}^{1/2} \Gamma_{\lambda' b}^{1/2} A_{\lambda\lambda'})$$

where
$$\Gamma_{\lambda a}^{1/2} = (2P_a)^{1/2} \gamma_{a\lambda}$$

and
$$(A_{\lambda\lambda'})^{-1} = (E_{\lambda} - E)\delta_{\lambda\lambda'} - \sum_{a}\gamma_{\lambda a}L_{a}^{0}\gamma_{\lambda a}$$

* Lane and Thomas for details : Rev. Mod. Phys. **30** (2) p.275 (1958)

NUCLEAR REACTION THEORIES R-MATRIX THE ORIGIN

General Hypothesis

- I. Non-relativistic Quantum Mechanics
- II. Only process with two product nuclei
- III. No processes of creation/destruction
- IV. Channel $c = \{J^{\pi}, \alpha_1 \alpha_2, \{q_i\}\}$
- V. For $r > a_c$ (in configuration space) : V = V(r)

Additional Considerations in RRR

- A. Compound nucleus
- B. Potential square well (Hard sphere)
- C. Level Approximations (Breit-Wigner, Reich-Moore)
- D. Fission ; Capture
- E. Averaged R-Matrix \rightarrow URR

R-Matrix

$$R_{ab} = \sum_{\lambda} \frac{\gamma_{a\lambda} \times \gamma_{b\lambda}}{E - E_{\lambda}}$$

Collision Matrix *

$$U_{ab} = e^{i(\Omega_a + \Omega_b)} (\delta_{ab} (1 - 2iP_a / L_a) + 2i\sqrt{P_a} (I - RL)_{ab}^{-1} \sqrt{P_b} / L_b) = e^{i(\Omega_a + \Omega_b)} (\delta_{ab} + i\sum_{\lambda\lambda'} \Gamma_{\lambda a}^{1/2} \Gamma_{\lambda b}^{1/2} A_{\lambda\lambda'})$$

where

 $\Gamma_{\lambda a}^{1/2} = \left(2P_a\right)^{1/2} \gamma_{a\lambda}$

and
$$(A_{\lambda\lambda'})^{-1} = (E_{\lambda} - E)\delta_{\lambda\lambda'} - \sum_{a} \gamma_{\lambda a} L_{a}^{0} \gamma_{\lambda a}$$

* Lane and Thomas for details : Rev. Mod. Phys. **30** (2) p.275 (1958)

NUCLEAR REACTION THEORIES R-MATRIX THE ORIGIN AND BEYOND

 γ 's / E_{λ} are real numbers independent of E + Physical Meaning of Γ 's

ac is framing the resonance parameters ; Boundary Conditions ;

RRR/URR/Continuum ; Averaged Parameters ; Link to Optical Model

Modelling of Fission

We will present a few perspective that could be achieved in the future

 γ 's / E_{λ} are real numbers independent of E + Physical Meaning of Γ 's

We will present a few perspective that could be achieved in the future

 γ 's / E_{λ} are real numbers independent of E + Physical Meaning of Γ 's

We will present a few perspective that could be achieved in the future

Step Forwards for Cross Section evaluation in the resonance range

What about Optical Potential in the Resonance range ?

www.cea.fr

R-MATRIX WITH AVERAGE PHENOMENOLOGICAL POTENTIAL

Collision Matrix $U_{ab} = e^{i(\Omega_a + \Omega_b)} (\delta_{ab} + i \sum_{\lambda \lambda'} \Gamma_{\lambda a}^{1/2} \Gamma_{\lambda b}^{1/2} A_{\lambda \lambda'}) \text{ where } \Gamma_{\lambda a}^{1/2} = (2P_a)^{1/2} \gamma_{a\lambda}$

Penetrability is calculated via a potential square well for entrance channel (neutron most of the time) +Coulomb barrier for charged particles

Arbitrary choice of ac and several Boundary cond.

Effect of a **diffuse edge optical potential** ?*

$$\Gamma_{\lambda a}^{1/2} = (2P_a^{OM})^{1/2} \gamma_{a\lambda} \qquad \text{Calculate Penetrability with Optical Potential}$$

$$\Gamma_{\lambda a}^{1/2} = (2P_a^{SW})^{1/2} \gamma_{a\lambda} f \qquad \text{Correction factor keeping Square Well}^*$$

$$\Gamma_{\lambda a}^{1/2} = (2P_a^{ESW})^{1/2} \gamma_{a\lambda} \qquad \text{Equivalent Square Well} \rightarrow \text{choice of proper ac}$$

* Vogt for details : Rev. Mod. Phys. **34** (4) p.723 (1962)

R-MATRIX WITH AVERAGE PHENOMENOLOGICAL POTENTIAL

Collision Matrix $U_{ab} = e^{i(\Omega_a + \Omega_b)} (\delta_{ab} + i \sum_{\lambda \lambda'} \Gamma_{\lambda a}^{1/2} \Gamma_{\lambda b}^{1/2} A_{\lambda \lambda'}) \text{ where } \Gamma_{\lambda a}^{1/2} = (2P_a)^{1/2} \gamma_{a\lambda}$

Penetrability is calculated via a potential square well for entrance channel (neutron most of the time) +Coulomb barrier for charged particles

Arbitrary choice of ac and several Boundary cond.

Effect of a **diffuse edge optical potential** ?*

$$\Gamma_{\lambda a}^{1/2} = \left(2P_a^{OM}\right)^{1/2} \gamma_{a\lambda}$$

$$\Gamma_{\lambda a}^{1/2} = \left(2P_a^{SW}\right)^{1/2} \gamma_{a\lambda} f$$

$$\Gamma_{\lambda a}^{1/2} = \left(2P_a^{ESW}\right)^{1/2} \gamma_{a\lambda}$$

Calculate Penetrability with Optical Potential

1st Perspective

Correction factor keeping Square Well*

Equivalent Square Well → choice of proper ac

* Vogt for details : Rev. Mod. Phys. **34** (4) p.723 (1962)

Is it working ? → look at Unresolved resonance range

Averaged Collision Matrix (over a limited energy domain)

No direct reaction contributions considered here (absorption)

In R-Matrix ; ac is arbitrary Choose to give ac a proper physical interpretation using models coming from high energy

Choice of channel radius a_c

²⁴¹Am+n

Forward : from OM to R-Matrix

Choose a_c using phase shift ϕ_c coming from optical model calculations

241**Am+n**

Forward : from OM to R-Matrix

Choose a_c using phase shift ϕ_c coming from optical model calculations

$$\begin{cases}
\phi_{0}(\rho) = \rho \\
\phi_{1}(\rho) = \rho - \tan^{-1}(\rho) \\
\phi_{2}(\rho) = \rho - \tan^{-1}(\frac{3\rho}{3 - \rho^{2}})
\end{cases}$$

241**Am+n**

Forward : from OM to R-Matrix

Choose a_c using phase shift ϕ_c coming from optical model calculations

Backward \rightarrow Verify ac choice with transmission factor T_c

Choose a_c using phase shift ϕ_c coming from optical model calculations

$$(\mathbf{f} \mathbf{f} \mathbf{f}_{c} = 1 - \left| \overline{U}_{c} \right|^{2} \longrightarrow T_{c} \approx 4\pi P_{L} s_{c}$$

241**Am+**N

Backward \rightarrow Verify ac choice with transmission factor T_c

Choose a_c using phase shift ϕ_c coming from optical model calculations

$$T_{c} = 1 - \left|\overline{U}_{c}\right|^{2} \longrightarrow T_{c} \approx 4\pi P_{L}s_{c}$$

$$\begin{cases}
P_{0}(\rho) = \rho \\
P_{1}(\rho) = \frac{\rho^{3}}{1 + \rho^{2}} \\
P_{2}(\rho) = \frac{\rho^{5}}{9 + 3\rho^{2} + \rho^{4}}
\end{cases} \qquad (\rho = ka_{c})$$

241**Am+n**

 $P \Longrightarrow P^{ESW}$

Backward \rightarrow Verify ac choice with transmission factor T_c

241**Am+**N

Backward \rightarrow Verify ac choice with transmission factor T_c

241**Am+n**

 \Rightarrow Very good agreement between ECIS and « hard sphere » up to 200-300 keV \Rightarrow Different ac for different orbital momenta

Find Strenght functions and R^{\pi} with SPRT*

Confirmation of empirical rule (F. Frohner, O. Bouland, NSE, 2001) $S_0 \approx S_2 \approx cst$ $\overline{R}_0^{\infty} \approx 0 \Rightarrow$ Effective Radius R' equal to channel radius (Averaged R-Matrix formalism)

$$\sigma_p = \lim_{E \to 0} \sigma_{e_c}(E) = 4\pi R'^2 \qquad R' = a_0(1 - \overline{R}_0^\infty) \Longrightarrow R' \approx a_0$$

*Delaroche et Lagrange (IAEA-190, 1976) *E.Rich et al. NSE, **162** (2009) 76-86 | PAGE 11

241

Apply equivalent methods to Resolved Resonance range

Fertile nuclei ok ; What about fissile nuclei ?

Step Forwards for Cross Section evaluation in the resonance range

What about Fission in the Resonance Range?

www.cea.fr

 $V(\eta)$

In the Unresolved resonance range and Continuum Fission Barriers calculations used for Transmission coefficient $\pi T_r \cdot T_f$

 $\sigma_{n,f} = \frac{\pi}{k^2} \frac{T_n \cdot T_f}{T} W_{nf}$

+ Fission ingredients (J,K, Rotational band, class II, etc ...) Fission barriers calculation in the Resolved Resonance Range ?

1380

1400

1420

Incident neutron energy (eV)

1440

1460

1480

Simple Cramer-Nix Barrier

0.8 0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.6 0.4 0.6 0.7 0.8 0.340 0.340 0.360 13400.360

R-MATRIX WAS IS MAINLY DEDICATED TO PARTICLE CHANNEL

 P_c and S_c are defined from φ_c and evaluated at $r = a_c$, statistics can be done on $E_{\lambda}, \gamma_{\lambda c}$ $S_c + iP_c = \left[\frac{r_c}{2}\frac{\partial \varphi_c}{\partial z}\right]$

$$c_{c} + iP_{c} = \left[\frac{r_{c}}{\varphi_{c}}\frac{\partial\varphi_{c}}{\partial r_{c}}\right]_{r_{c} = a_{c}}$$

Is a similar approach possible for fission?

EXAMPLE OF EXPLICIT TREATMENT OF THE FISSION BARRIER

 $V^{(\mu)}(\eta)$; η characterizes a collective fission coordinate (e.g. $Q_2, \beta_2, ...$)

Ces

Cez

Cez

Image: Second stateFission analysis in resolved resonance range
towards better evaluation of fission widths

Generic issues for defining fission channels: Reich-Moore allows a good description of fission \rightarrow For Heavy Nuclei ; 1 radiative capture channel with Hypothesis: many photons interferences cancel out

$$(A_{\lambda\lambda'})^{-1} = (E_{\lambda} - E) \delta_{\lambda\lambda'} - \sum_{a} \gamma_{\lambda a} L_{a}^{0} \gamma_{\lambda a}^{\dagger} \xrightarrow{\text{Reich-Moore}} (A_{\lambda\lambda'})^{-1} = (E_{\lambda} - E - i\Gamma_{\lambda, \gamma tot} / 2) \delta_{\lambda\lambda'} - \sum_{a \neq \gamma} \gamma_{\lambda a} L_{a}^{0} \gamma_{\lambda a}^{\dagger} \xrightarrow{\text{Reich-Moore}} (A_{\lambda\lambda'})^{-1} = (E_{\lambda} - E - i\Gamma_{\lambda, \gamma tot} / 2) \delta_{\lambda\lambda'} - \sum_{a \neq \gamma} \gamma_{\lambda a} L_{a}^{0} \gamma_{\lambda a}^{\dagger} \xrightarrow{\text{Reich-Moore}} (A_{\lambda\lambda'})^{-1} = (E_{\lambda} - E - i\Gamma_{\lambda, \gamma tot} / 2) \delta_{\lambda\lambda'} - \sum_{a \neq \gamma} \gamma_{\lambda a} L_{a}^{0} \gamma_{\lambda a}^{\dagger} \xrightarrow{\text{Reich-Moore}} (A_{\lambda\lambda'})^{-1} = (E_{\lambda} - E - i\Gamma_{\lambda, \gamma tot} / 2) \delta_{\lambda\lambda'} - \sum_{a \neq \gamma} \gamma_{\lambda a} L_{a}^{0} \gamma_{\lambda' a}^{\dagger} \xrightarrow{\text{Reich-Moore}} (A_{\lambda\lambda'})^{-1} = (E_{\lambda} - E - i\Gamma_{\lambda, \gamma tot} / 2) \delta_{\lambda\lambda'} - \sum_{a \neq \gamma} \gamma_{\lambda a} L_{a}^{0} \gamma_{\lambda' a}^{\dagger} \xrightarrow{\text{Reich-Moore}} (A_{\lambda\lambda'})^{-1} = (E_{\lambda} - E - i\Gamma_{\lambda, \gamma tot} / 2) \delta_{\lambda\lambda'} - \sum_{a \neq \gamma} \gamma_{\lambda a} L_{a}^{0} \gamma_{\lambda' a}^{\dagger} \xrightarrow{\text{Reich-Moore}} (A_{\lambda\lambda'})^{-1} = (E_{\lambda} - E - i\Gamma_{\lambda, \gamma tot} / 2) \delta_{\lambda\lambda'} - \sum_{a \neq \gamma} \gamma_{\lambda a} L_{a}^{0} \gamma_{\lambda' a}^{\dagger} \xrightarrow{\text{Reich-Moore}} (A_{\lambda\lambda'})^{-1} = (E_{\lambda} - E - i\Gamma_{\lambda, \gamma tot} / 2) \delta_{\lambda\lambda'}$$

$$R_{ab} = \sum_{\lambda} \frac{\gamma_{a\lambda} \times \gamma_{b\lambda}}{E - E_{\lambda}}$$

 $R_{ab} = \sum_{\lambda} \frac{\gamma_{a\lambda} \times \gamma_{b\lambda}}{E - E_{\lambda} - i\Gamma_{\lambda, \gamma tot} / 2}$

→Fission channels allow fission interference
 →No fundamental physical meaning
 →²³⁹Pu

 $0^+ \rightarrow 2$ Fission channels $1^+ \rightarrow 1$ Fission channel

→Statistics ? ; v_{eff} ??? ; (n, γ f) process ?

FISSION ANALYSIS IN RESOLVED RESONANCE RANGE TOWARDS BETTER EVALUATION OF FISSION WIDTHS

Use an additional quantum number* \rightarrow K (proj. of J on the fission axis) Fission channels defined by $c_{f,K} = \{J^{\pi}, fission, \{K\}\} \longrightarrow \Gamma_{cf,K}$

$$\sigma_{n,f}(E) = \sum_{J^{\pi}} \sigma_{n,f}^{J^{\pi}}(E) = \sum_{J^{\pi},K} \sigma_{n,f}^{J^{\pi},K}(E)$$

Need of new experiments:

- Polarized neutron/target
- Angular Distribution of F.F.

Development in Analysis codes:

- Polarized neutron/target
- K contributions
- Angular Distribution of fission fragments

For ²³⁵U :

some experiments

N.J. Pattenden et al.; Nucl. Phys. A **167** (1971)

G.A. Keyworth et al.; Conf. On nuclear cross section and technology,

Washington D.C., USA, NBS Special Publication 425 (1975) p.576

few evaluations

M.S. Moore, L.C. Leal, et al., Nulc. Phys. A 502 (1989)

Evaluation in Resonance Range

Disentangle fission channels Evaluation of J, K and $\Gamma_{cf,K}$

* W.I. Furman: FJ/OH Spring Session'99, Neutron data measurements & evaluation May 17 1999, Geel
FISSION ANALYSIS IN RESOLVED RESONANCE RANGE TOWARDS BETTER EVALUATION OF FISSION WIDTHS

Use an additional quantum number* \rightarrow K (proj. of J on the fission axis) Fission channels defined by $c_{f,K} = \{J^{\pi}, fission, \{K\}\} \longrightarrow \Gamma_{cf,K}$

$$\sigma_{n,f}(E) = \sum_{J^{\pi}} \sigma_{n,f}^{J^{\pi}}(E) = \sum_{J^{\pi},K} \sigma_{n,f}^{J^{\pi},K}(E)$$

Need of new experiments:

- Polarized neutron/target
- Angular Distribution of F.F.

Development in Analysis codes:

- Polarized neutron/target
- K contributions
- Angular Distribution of fission fragments

For ²³⁵U :3rd Perspective : 3.1N.J. Pattenden et al.; Nucl. Phys. A **167** (1971)G.A. Keyworth et al.;Conf. On nuclear cross section and technology,
Washington D.C., USA, NBS Special Publication 425 (1975) p.576Few evaluationsM.S. Moore, L.C. Leal, et al., Nulc. Phys. A **502** (1989)Evaluation in Resonance Range
Disentangle fission channels
Evaluation of J, K and Γ_{ef.K}

* W.I. Furman: FJ/OH Spring Session'99, Neutron data measurements & evaluation May 17 **1999**, Geel

FISSION ANALYSIS IN RESOLVED RESONANCE RANGE TOWARDS BETTER EVALUATION OF FISSION WIDTHS

- Investigation of the two-step $(n,\gamma f)$ process*
- Still a topic of discussion
- No direct measurements of this reaction \rightarrow challenge
- WPEC/SG34 provides some recent explanations for ²³⁹Pu

Future evaluation artworks on ²³⁹Pu and others \rightarrow include explicitly the two-step (n, γ f) reaction (additional dedicated partial reaction width, $\Gamma_{\gamma f}$); usual fitted fission width becoming clear \rightarrow one-step fission component only.

* E. Lynn, Rev. Mod. Phys. **52** (1980)

FISSION ANALYSIS IN RESOLVED RESONANCE RANGE TOWARDS BETTER EVALUATION OF FISSION WIDTHS

3rd Perspective: 3.2

Investigation of the two-step $(n,\gamma f)$ process*

Still a topic of discussion

WPEC/SG34 provides some recent explanations for ²³⁹Pu

Future evaluation artworks on ²³⁹Pu and others \rightarrow include explicitly the two-step (n, γ f) reaction (additional dedicated partial reaction width, $\Gamma_{\gamma f}$); usual fitted fission width becoming clear \rightarrow one-step fission component only.

* E. Lynn, Rev. Mod. Phys. **52** (1980)

DE LA RECHERCHE À L'INDUSTRIE

Step Forwards for Cross Section evaluation in the resonance range

What about Uncertainties from the Resonance Range to the Continuum?

www.cea.fr

CROSS SECTIONS "KNOWLEDGE" EVALUATION IN THE RESONANCE RANGE AND HIGHER

Issues :

- Systematic experimental uncertainties
- Phenomenological Nuclear reaction model theories + Parameters
- Model defects (Syst. Uncertainties)
- Integral experiment assimilation
- Common Physics from RRR to Continuum (previous slides)

DE LA RECHERCHE À L'INDUSTRIE

C23

Bayes' theory

> Description of \vec{x}

Bayes' theory

> Description of \vec{y}

- Microscopic experiments (TOF)
 - Transmission,
 - GELINA, nTOF, DANCE, ...
- Integral experiments
 - ICBEP
 - PROFIL, PROFIL-2, PROFIL-R et PROFIL-M
 - Spectral indices MASURCA

$$\boldsymbol{\sigma}(E_n, \vec{x}_{RRR}, \vec{x}_{URR}, \vec{x}_{OM}, \vec{x}_{fission}, \dots)$$

- How to deal with it ?
 - Several teams with internal constraints
 - Several analysis methodologies
- Solutions :
 - Share Physics (see previous slides)
 - → coupling between RRR/URR/Continuum
 - External constraints (Experiments ; Mathematics)
 - Extensive use of Monte-Carlo / look at pdf's

4th Perspective

 $\sigma(E_n, \vec{x}_{RRR}, \vec{x}_{URR}, \vec{x}_{OM}, \vec{x}_{fission}, ...)$

- How to deal with it ?
 - Several teams with internal constraints
 - Several analysis methodologies
- Solutions :
 - Share Physics (see previous slides)
 - → coupling between RRR/URR/Continuum
 - External constraints (Experiments ; Mathematics)
 - Extensive use of Monte-Carlo / look at pdf's

4th Perspective

 $\sigma(E_n, \vec{x}_{RRR}, \vec{x}_{URR}, \vec{x}_{OM}, \vec{x}_{fission}, ...)$

- How to deal with it ?
 - Several teams with internal constraints
 - Several analysis methodologies
- Solutions :
 - Share Physics (see previous slides)
 - → coupling between RRR/URR/Continuum
 - External constraints (Experiments ; Mathematics)
 - Extensive use of Monte-Carlo / look at pdf's

4th Perspective

 $\sigma(E_n, \vec{x}_{RRR}, \vec{x}_{URR}, \vec{x}_{OM}, \vec{x}_{fission}, ...)$

- How to deal with it ?
 - Several teams with internal constraints
 - Several analysis methodologies
- Solutions :
 - Share Physics (see previous slides)
 - → coupling between RRR/URR/Continuum
 - External constraints (Experiments ; Mathematics)
 - Extensive use of Monte-Carlo / look at pdf's

Unified model on an energy domain

 $[\mathsf{E}_{\mathsf{L}}, \mathsf{E}_{\mathsf{R}}] + \text{Boundary at } \mathsf{E}_{\mathsf{C}}^{:}$ $\vec{t} = \vec{t}_{L}(x_{\mu}) \text{ if } \mathsf{E}_{L} \ge E \ge E_{c}$ $\vec{t} = \vec{t}_{R}(x_{\mu}) \text{ if } \mathsf{E}_{R} \le E \le E_{c}$ @ Conrad

Two models

- Unified model on an energy domain
- $[\mathsf{E}_{\mathsf{L}}, \mathsf{E}_{\mathsf{R}}] + \text{Boundary at } \mathsf{E}_{\mathsf{C}^{:}}$ $\vec{t} = \vec{t}_{L}(x_{\mu}) \text{ if } \mathsf{E}_{L} \ge E \ge E_{c}$ $\vec{t} = \vec{t}_{R}(x_{\mu}) \text{ if } \mathsf{E}_{R} \le E \le E_{c}$

© Conrad

Two models

- Given a microscopic experiment with statistical and systematic uncertainties on $[E_L, E_R]$
 - See effect of systematic uncertainties on nuclear model parameters
 - See effect of systematic uncertainties on cross section

- Unified model on an energy domain
- $\begin{bmatrix} \mathsf{E}_{\mathsf{L}}, \, \mathsf{E}_{\mathsf{R}} \end{bmatrix} + \text{Boundary at } \mathsf{E}_{\mathsf{C}^{:}} \\ \vec{t} = \vec{t}_{L}(x_{\mu}) \text{ if } \mathsf{E}_{L} \ge E \ge E_{c} \\ \vec{t} = \vec{t}_{R}(x_{\mu}) \text{ if } \mathsf{E}_{R} \le E \le E_{c} \end{bmatrix}$

@ Conrad

Two models

- Given a microscopic experiment with statistical and systematic uncertainties on $[E_1, E_R]$
 - See effect of systematic uncertainties on nuclear model parameters
 - See effect of systematic uncertainties on cross section
- Imposing constraints on boundary E_{c} :
 - Mathematical framework
 - Cross sections continuity
 - See effect of constraint on cross section

- Unified model on an energy domain
- $\begin{bmatrix} \mathsf{E}_{\mathsf{L}}, \, \mathsf{E}_{\mathsf{R}} \end{bmatrix} + \text{Boundary at } \mathsf{E}_{\mathsf{C}^{:}}$ $\vec{t} = \vec{t}_{L}(x_{\mu}) \text{ if } \mathsf{E}_{L} \ge E \ge E_{c}$ $\vec{t} = \vec{t}_{R}(x_{\mu}) \text{ if } \mathsf{E}_{R} \le E \le E_{c}$

© Conrad

Two models

- Given a microscopic experiment with statistical and systematic uncertainties on $[E_L, E_R]$
 - See effect of systematic uncertainties on nuclear model parameters
 - See effect of systematic uncertainties on cross section
- Imposing constraints on boundary E_C:
 - Mathematical framework
 - Cross sections continuity
 - See effect of constraint on cross section
- Use of Integral experiments impacting several energy domains:
 - See effect of Integral Data Assimilation on cross sections/models

- × Didactic example : Sodium inelastic cross sections
 - \times Energy Range studied [1.9 2.1 MeV]; Boundary at 2 MeV.
 - \times Below 2 MeV : Resolved resonance range (Jeff3.2)
 - × Above 2 MeV : Jeff3.2 (Optical Potential + Partial models)

- × Didactic example : Sodium inelastic cross sections
 - \times Energy Range studied [1.9 2.1 MeV] ; Boundary at 2 MeV.
 - × Below 2 MeV : Resolved resonance range (Jeff3.2)
 - × Above 2 MeV : Jeff3.2 (Optical Potential + Partial models)

"Simulated" experimental Data :

- Based on theoretical points (red)
- 3% statistical uncertainties
- No/0.5/1/3% systematic uncertainties

4.1th Perspective Analysis of wide range experiments

- Didactic example : Sodium inelastic cross sections
 - Energy Range studied [1.9 2.1 MeV]; Boundary at 2 MeV.
 - Below 2 MeV : Resolved resonance range (Jeff3.2)
 - Above 2 MeV : Jeff3.2 (Optical Potential + Partial models)

Syst. Uncertainty
 Tends to ensure cross section continuity
 1st attempt with normalization
 → Generalize to other experimental
 (background, resolution parameters., isotopic concentration)

*Rouki et al., NIM in Physics Research Section A, **672** (2012)

x 10⁶

2.15

2.1

(e </ 2.05 Euergy

1.95

1.9

1.9

- Didactic example : Sodium inelastic cross sections
 - Energy Range studied [1.9 2.1 MeV]; Boundary at 2 MeV.
 - Below 2 MeV : Resolved resonance range (Jeff3.2)
 - Above 2 MeV : Jeff3.2 (Optical Potential + Partial models)

Syst. Uncertainty
 Tends to ensure cross section continuity
 1st attempt with normalization
 → Generalize to other experimental
 (background, resolution parameters., isotopic concentration)

0.6 0.4 0.2 -0.2 -0.4 -0.6 -0.8 1.95 2.1 2.15 2.05 Energy (eV) x 10⁶ 4.1th Perspective Analysis of wide range experiments PAGE 31

Statistical Uncertainty 3%

Normalization Uncertainty 0.5%

*Rouki et al., NIM in Physics Research Section A, **672** (2012)

0.8

- Didactic example : Sodium inelastic cross sections
 - Energy Range studied [1.9 2.1 MeV]; Boundary at 2 MeV.
 - Below 2 MeV : Resolved resonance range (Jeff3.2)
 - Above 2 MeV : Jeff3.2 (Optical Potential + Partial models)

Syst. Uncertainty
 Tends to ensure cross section continuity
 1st attempt with normalization
 → Generalize to other experimental
 (background, resolution parameters., isotopic concentration)

Normalization Uncertainty 1% x 10⁶ 0.8 2.15 0.6 2.1 0.4 0.2 Energy (eV) -0.2 -0.4 -0.6 1.95 -0.8 1.95 2.1 2.15 1.9 2 2.05 Energy (eV) x 10⁶ 4.1th Perspective Analysis of wide range experiments

Statistical Uncertainty 3%

*Rouki et al., NIM in Physics Research Section A, 672 (2012)

PAGE 31

x 10⁶

2.15

2.1

Energy (eV)

1.95

1.9

1.9

- Didactic example : Sodium inelastic cross sections
 - Energy Range studied [1.9 2.1 MeV]; Boundary at 2 MeV.
 - Below 2 MeV : Resolved resonance range (Jeff3.2)
 - Above 2 MeV : Jeff3.2 (Optical Potential + Partial models)

Syst. Uncertainty
 Tends to ensure cross section continuity
 1st attempt with normalization
 → Generalize to other experimental
 (background, resolution parameters., isotopic concentration)

0.6 0.4 0.2 -0 -0.2 -0.4 -0.6 -0.8 1.95 2.1 2.05 2.15 Energy (eV) x 10⁶ 4.1th Perspective Analysis of wide range experiments PAGE 31

0.8

Statistical Uncertainty 3%

Normalization Uncertainty 3%

*Rouki et al., NIM in Physics Research Section A, **672** (2012)

- Didactic example : Sodium inelastic cross sections
 - Energy Range studied [1.9 2.1 MeV] ; Boundary at 2 MeV.
 - Below 2 MeV : Resolved resonance range (Jeff3.2)
 - Above 2 MeV : Jeff3.2 (Optical Potential + Partial models)

"Real" Evaluation done for time being JEFF3.2 ²³Na Based on new (n,n') measurements* (Syst. Unc. 2.6%)

— 0,00. 011001.0110,

Tends to ensure cross section continuity

- 1st attempt with normalization
- \rightarrow Generalize to other experimental

(background, resolution parameters., isotopic concentration)

*Rouki et al., NIM in Physics Research Section A, **672** (2012)

$$\chi_{GSL}^{2} = \left(\vec{x} - \vec{x}_{m}\right)^{T} M_{x}^{-1} \left(\vec{x} - \vec{x}_{m}\right) + \left(\vec{y} - \vec{t} \left(\vec{x}\right)\right)^{T} M_{y}^{-1} \left(\vec{y} - \vec{t} \left(\vec{x}\right)\right)$$

$$\chi^{2}_{GSL} = (\vec{x} - \vec{x}_{m})^{T} M_{x}^{-1} (\vec{x} - \vec{x}_{m}) + (\vec{y} - \vec{t} (\vec{x}))^{T} M_{y}^{-1} (\vec{y} - \vec{t} (\vec{x}))$$

$$\chi^{2}_{GLS+C} = (\vec{x} - \vec{x}_{m})^{T} M_{x}^{-1} (\vec{x} - \vec{x}_{m})$$

$$+ (\vec{y} - \vec{t})^{T} M_{y}^{-1} (\vec{y} - \vec{t})$$

$$+ 2|C^{T} (\vec{x})| \cdot \lambda$$

$$\chi^{2}_{GSL} = (\vec{x} - \vec{x}_{m})^{T} M_{x}^{-1} (\vec{x} - \vec{x}_{m}) + (\vec{y} - \vec{t} (\vec{x}))^{T} M_{y}^{-1} (\vec{y} - \vec{t} (\vec{x}))$$

$$\chi^{2}_{GLS+C} = (\vec{x} - \vec{x}_{m})^{T} M_{x}^{-1} (\vec{x} - \vec{x}_{m})$$

$$+ (\vec{y} - \vec{t})^{T} M_{y}^{-1} (\vec{y} - \vec{t})$$

$$+ 2 C^{T} (\vec{x}) \lambda \qquad \text{Lagrange Multipliers}$$

$$\chi^{2}_{GSL} = (\vec{x} - \vec{x}_{m})^{T} M_{x}^{-1} (\vec{x} - \vec{x}_{m}) + (\vec{y} - \vec{t} (\vec{x}))^{T} M_{y}^{-1} (\vec{y} - \vec{t} (\vec{x}))$$

$$\chi^{2}_{GLS+C} = (\vec{x} - \vec{x}_{m})^{T} M_{x}^{-1} (\vec{x} - \vec{x}_{m})$$

$$+ (\vec{y} - \vec{t})^{T} M_{y}^{-1} (\vec{y} - \vec{t})$$

$$+ 2 C^{T} (\vec{x}) \cdot \lambda \qquad \text{Lagrange Multipliers}$$

- × Simple Mathematical description
- × Difficult Mathematical resolution
 - × Based on Uzawa algorithm
 - \times Slow convergence
 - \times Constraints calculations \rightarrow time consuming

$$\chi^{2}_{GSL} = (\vec{x} - \vec{x}_{m})^{T} M_{x}^{-1} (\vec{x} - \vec{x}_{m}) + (\vec{y} - \vec{t} (\vec{x}))^{T} M_{y}^{-1} (\vec{y} - \vec{t} (\vec{x}))$$

$$\chi^{2}_{GLS+C} = (\vec{x} - \vec{x}_{m})^{T} M_{x}^{-1} (\vec{x} - \vec{x}_{m})$$

$$+ (\vec{y} - \vec{t})^{T} M_{y}^{-1} (\vec{y} - \vec{t})$$

$$+ 2 C^{T} (\vec{x}) (\lambda) \quad \text{Lagrange Multipliers}$$

- × Simple Mathematical description
- × Difficult Mathematical resolution
 - \times Based on Uzawa algorithm
 - × Slow convergence
 - \times Constraints calculations \rightarrow time consuming

4.2th Perspective Impose constraints

IMPOSING CONSTRAINTS ON SEVERAL MODELS LAGRANGE MULTIPLIERS ; ²³⁸U EXAMPLE

- Didactic example : Uranium Total cross section
 - Energy Range studied [25 750 keV] ; Boundary E_C at 150 keV.
 - Below 150 keV : Average R matrix
 - Above 150 keV : Average R matrix or Optical Potential

Considered parameters : <u>Unresolved Resonance Range</u> : Optical Model :

Effective Radius (**R**'), Strength ($S_{l=0,1}$), Distant level ($R^{\infty}_{l=0,1}$) Reduced Scattering Radius (Γ_0) and Diffusiveness (a_0)

- Considered Constraint on Cross sections at $E_c : C(x) = \langle \sigma_t^R \rangle_{E_c} \langle \sigma_t^L \rangle_{E_c} = 0$
- "Real" experimental Data :
 - Based on C.A.Uttley et al., 1966
 - 1% statistical uncertainties
 - No systematic uncertainties
- Difficulty arises if :
 - Parameters are not well chosen
 - Boundary is not well chosen : too high or too low making one model outside its scope
 - There are Model defects

IMPOSING CONSTRAINTS ON SEVERAL MODELS LAGRANGE MULTIPLIERS ; ²³⁸U EXAMPLE

- Didactic example : Uranium Total cross section
 - Energy Range studied [25 750 keV]; Boundary E_c at 150 keV.
 - Below 150 keV : Average R matrix
 - Above 150 keV : Average R matrix or Optical Potential

Considered parameters : <u>Unresolved Resonance Range</u> : <u>Optical Model</u> :

Effective Radius (**R**'), Strength ($S_{l=0,1}$), Distant level ($R^{\infty}_{l=0,1}$) Reduced Scattering Radius (Γ_0) and Diffusiveness (a_0)

- Considered Constraint on Cross sections at $E_c : C(x) = \langle \sigma_t^R \rangle_{E_c} \langle \sigma_t^L \rangle_{E_c} = 0$
- "Real" experimental Data :
 - Based on C.A.Uttley *et al.*, **1966**
 - 1% statistical uncertainties
 - No systematic uncertainties
- Difficulty arises if :
 - Parameters are not well chosen
 - Boundary is not well chosen : too high or too low making one model outside its scope
 - There are Model defects

IMPOSING CONSTRAINTS ON SEVERAL MODELS LAGRANGE MULTIPLIERS ; ²³⁸U EXAMPLE

- Didactic example : Uranium Total cross section
 - Energy Range studied [25 750 keV]; Boundary E_C at 150 keV.
 - Below 150 keV : Average R matrix
 - Above 150 keV : Average R matrix or Optical Potential

Considered parameters : <u>Unresolved Resonance Range</u> : <u>Optical Model</u> :

Effective Radius (**R**'), Strength ($S_{l=0,1}$), Distant level ($R^{\infty}_{l=0,1}$) Reduced Scattering Radius (Γ_0) and Diffusiveness (a_0)

- Considered Constraint on Cross sections at $E_c : C(x) = \langle \sigma_t^R \rangle_{E_c} \langle \sigma_t^L \rangle_{E_c} = 0$
- "Real" experimental Data :
 - Based on C.A.Uttley *et al.*, **1966**
 - 1% statistical uncertainties
 - No systematic uncertainties
- Difficulty arises if :
 - Parameters are not well chosen
 - Boundary is not well chosen : too high or too low making one model outside its scope
 - There are Model defects

UNCERTAINTIES : EVALUATION

$$\boldsymbol{\sigma}(E_n, \vec{x}_{RRR}, \vec{x}_{URR}, \vec{x}_{OM}, \vec{x}_{fission}, \dots)$$

What ever is the methodology σ and x are considered as random variables (pdf)

Monte-Carlo Sampling is a natural ingredient

Estimation of Uncertainties with Monte-Carlo during the evaluation process *:

$$p(\vec{x} \mid \vec{y}, U) = \frac{p(\vec{x}, U) \cdot p(\vec{y} \mid \vec{x}, U)}{\int p(\vec{x}, U) \cdot p(\vec{y} \mid \vec{x}, U) d\vec{x}}$$

Sample of $p(\vec{x} | M, U) \rightarrow \vec{x}_k$

For each \vec{x}_k calculation of Likelihood $\ell_k[p(\vec{y}|M, \vec{x}_k, U)]$

UNCERTAINTIES : EVALUATION

$$\boldsymbol{\sigma}(E_n, \vec{x}_{RRR}, \vec{x}_{URR}, \vec{x}_{OM}, \vec{x}_{fission}, \dots)$$

What ever is the methodology σ and x are considered as random variables (pdf)

Monte-Carlo Sampling is a natural ingredient

Estimation of Uncertainties with Monte-Carlo during the evaluation process *:

$$p(\vec{x} \mid \vec{y}, U) = \frac{p(\vec{x}, U) \cdot p(\vec{y} \mid \vec{x}, U)}{\int p(\vec{x}, U) \cdot p(\vec{y} \mid \vec{x}, U) d\vec{x}}$$

*R. Capote and D. Smith, Nucl. Data Sheets **109**, 2768 (**2008**) * and **C. De Saint Jean et al., Nuc. Sci. Eng., **161**, 363 (**2009**). ** P. Schilleebeck et al., Nucl. Data Sheets (to be published) Sample of $p(\vec{x} | M, U) \rightarrow \vec{x}_k$

For each \vec{x}_k calculation of Likelihood $\ell_k[p(\vec{y}|M, \vec{x}_k, U)]$

UMC for the whole energy range with integrated analysis tools covering [0eV ; 200MeV] With shared Physics (parameters) With constraints With Experiments → Treatment of Experimental parameters and marginalisation** ("get rid of them properly") FULL BAYESIAN**

$$\sigma(E_n, \vec{x}_{RRR}, \vec{x}_{URR}, \vec{x}_{OM}, \vec{x}_{fission}, ...) + \left\{ \delta \left\langle \sigma_{i} \sigma_{j} \right\rangle \right\}$$

What about propagation of uncertainties and/or integral data assimilations?

Need of a new generation of simulation codes :

- Need of Integrated tools : Nuclear reaction codes ; data treatment codes ; transport codes (Analog Monte-Carlo simulation,...)
- Need of "parallelized" codes → HPC horizon (for example Conrad is multithreaded)
- Use Pdf of parameters ; Sampling →bunch of random numbers (1000 is a magic number ?) ; Statistical methods ; correlations (Cholesky) ;

*Palmiotti et al., J. Korean Phys. Soc., **59**, 1123 (**2011**); C. De Saint Jean et al., J. Korean Phys. Soc., **59**, 1276 (**2011**); Koning et al. (TMC papers); E. Bauge (Forward-Backward papers)

- Need of a new generation of simulation codes :
 - Need of Integrated tools : Nuclear reaction codes ; data treatment codes ; transport codes (Analog Monte-Carlo simulation,...)
 - Need of "parallelized" codes → HPC horizon (for example Conrad is multithreaded)
- Use Pdf of parameters ; Sampling →bunch of random numbers (1000 is a magic number ?) ; Statistical methods ; correlations (Cholesky) ;

*Palmiotti et al., J. Korean Phys. Soc., **59**, 1123 (**2011**); C. De Saint Jean et al., J. Korean Phys. Soc., **59**, 1276 (**2011**); Koning et al. (TMC papers); E. Bauge (Forward-Backward papers)

| PAGE 35

Reactors

INTEGRAL DATA ASSIMILATION

- Evaluation libraries are judged to their ability to reproduce public benchmark (ICSBEP,IRPHE,...)
- Some of these benchmarks are even used as judged of a single evaluation (JEZEBEL)
- Consistent Nuclear Data Evaluation ; Integral Data Assimilation *

- Generalization ; extensive use of Monte-Carlo neutron transport code (MCNP,Tripoli4,...)
- Use Pdf of parameters (HPC)

INTEGRAL DATA ASSIMILATION

- Evaluation libraries are judged to their ability to reproduce public benchmark (ICSBEP,IRPHE,...)
- Some of these benchmarks are even used as judged of a single evaluation (JEZEBEL)
- Consistent Nuclear Data Evaluation ; Integral Data Assimilation *

- Generalization ; extensive use of Monte-Carlo neutron transport code (MCNP,Tripoli4,...)
- Use Pdf of parameters (HPC)

6th Perspective 6.1 IDA of Int. Experiments 6.2 HPC for Reactors !

| PAGE 36

*Palmiotti et al., J. Korean Phys. Soc., **59**, 1123 (**2011**); C. De Saint Jean et al., J. Korean Phys. Soc., **59**, 1276 (**2011**)

DE LA RECHERCHE À L'INDUSTI

Cea

²³⁹PU COVARIANCE MATRICES

Prior Correlation on Fission

Multigroup cross section Data Assimilation Nuclear model parameters Data Assimilation

DE LA RECHERCHE À L'INDUSTR

Cea

²³⁹PU COVARIANCE MATRICES

Post Correlation on Fission with Feedback on Parameters

"Public" Integral Experiments

Multigroup cross section Data Assimilation Nuclear model parameters Data Assimilation

²³⁹PU COVARIANCE MATRICES

 σ_g^r $\vec{x} = \{OMP, Fission, ...\}$

Multigroup cross section Data Assimilation Nuclear model parameters Data Assimilation

²³⁹PU COVARIANCE MATRICES

²³⁹PU COVARIANCE MATRICES

DE LA RECHERCHE À L'INDUSTR

²³⁹PU COVARIANCE MATRICES

 σ_{g}^{r} and $\chi_{g}, \upsilon \dots$ + TRENDS

Multigroup cross section Data Assimilation

DE LA RECHERCHE À L'INDUSTR

²³⁹PU COVARIANCE MATRICES

+ TRENDS

Multigroup cross section Data Assimilation

Cea conclusions

- Several kind of Nuclear Data
- Several kind of Nuclear Reaction Models
- □ Several kind of Experiments
- Several kind of Covariance Matrices
- Progress on Methodologies needed:
 - Data assimilation techniques
 - Adding physical constraints (On several models)
- □ Progress on Experiments needed:
 - Reduction of systematic uncertainties for microscopic measurements
 - Integral experiments to target limited energy domain / reactions / isotopes
- Progress on Nuclear models needed:
 - Share Common physic features
 - Microscopic models
 - Avoid compensations
- □ Needs to define Covariance estimation benchmarks:
 - Fixed experiments
 - Fixed a priori (on parameters and/or cross section & uncertainties)
 - Incremental complexity
 - Compare covariance evaluation methodologies

PAGE 84

- Several kind of Nuclear Data
- Several kind of Nuclear Reaction Models
- □ Several kind of Experiments
- Several kind of Covariance Matrices
- Progress on Methodologies needed:
 - Data assimilation techniques
 - Adding physical constraints (On several models)
- □ Progress on Experiments needed:
 - Reduction of systematic uncertainties for microscopic measurements
 - Integral experiments to target limited energy domain / reactions / isotopes
- Progress on Nuclear models needed:
 - Share Common physic features
 - Microscopic models
 - Avoid compensations
- □ Needs to define Covariance estimation benchmarks:
 - Fixed experiments
 - Fixed a priori (on parameters and/or cross section & uncertainties)
 - Incremental complexity
 - Compare covariance evaluation methodologies

DE LA RECHERCHE À L'INDUSTRIE

CONCLUSIONS

- Several kind of Nuclear Data
- Several kind of Nuclear Reaction Models
- □ Several kind of Experiments
- Several kind of Covariance Matrices
- Progress on Methodologies needed:
 - Data assimilation techniques
 - Adding physical constraints (On several models)
- □ Progress on Experiments needed:
 - Reduction of systematic uncertainties for microscopic measurements
 - Integral experiments to target limited energy domain / reactions / isotopes
- Progress on Nuclear models needed:
 - Share Common physic features
 - Microscopic models
 - Avoid compensations
- □ Needs to define Covariance estimation benchmarks:
 - Fixed experiments
 - Fixed a priori (on parameters and/or cross section & uncertainties)
 - Incremental complexity
 - Compare covariance evaluation methodologies

- Several kind of Nuclear Data
- Several kind of Nuclear Reaction Models
- □ Several kind of Experiments
- Several kind of Covariance Matrices
- Progress on Methodologies needed:
 - Data assimilation techniques
 - Adding physical constraints (On several models)
- Progress on Experiments needed:
 - Reduction of systematic uncertainties for microscopic me
 - Integral experiments to target limited energy domain / reas Perspective
- Progress on Nuclear models needed:
 - Share Common physic features
 - Microscopic models
 - Avoid compensations
- □ Needs to define Covariance estimation benchmarks:
 - Fixed experiments
 - Fixed a priori (on parameters and/or cross section & uncertainties)
 - Incremental complexity
 - Compare covariance evaluation methodologies

8th

Cea OTHER PERSPECTIVES

- 1. Other theories (S,K,...?)
- 2. Reich-Moore alternatives / Progress for Fission
- 3. Resonance shape analysis with double differential data (sodium/Fe/U,Pu,etc...)
- 4. Direct reaction treatment even in RRR
- 5. Microscopic Measurement :
 - a) Systematic uncertainties
 - b) Long range experiments (from RRR to Continuum)
 - c) Cold/hot experiments (few K to 1000 K)
 - d) Surrogate
 - e) Multi-Observables
 - I. fission+Capture, Fission xs / Fission yields ;
 - II. Spectra ...
- 6. Microscopic theories

7.