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Motivation and Aims

• Tie excursion, dose, dose rate and ANS-8.3 specification 

• Link static (criticality) to dynamic 

• Explore differences

– accident scenarios
– reactivity insertion modalities
– detection thresholds
– dose in “free air” versus “dose to human tissue”dose in free air  versus dose to human tissue  

– Identify strengths and weaknesses

• Affirm historical context
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NCSD 2009 Paper Highlights

Realism in Minimum Accidents

Process analysis justifies excursion formats

Dose (rate) in air to instrument;  Dose (rate) tissue to 
person

Time to detect @ 0.2 Gy/min air and receive 0.2 Gy (tissue)

Kinetics (inverse period ω) and Sustained Reaction  

How much dose is received in a very short time after 
alarm actuation? (initial human response)
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Low Power Excursions ( < 10 kW)

Experiments with 
SILENE and SHEBA 
showed that there 
were excursions thatwere excursions that

1) “Spoofed” CAAS 
detectors – power 
less than 0.2 Gy/min 
in AIR

2) Doses greater 
than 0.2 Gy in less 
than 1 min 

From Barbry-Malenfant NCSD 1993 Nashville TN

Minimum Accident- Definition, Specification, Interpretation
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ANS 8.3  Appendix B Rate Meter “Examples”

Rapid Transient

P = F (0.2 Gy) / 1 msec

Sustained Reaction

P = F (0.2 Gy) / 60 sec

0.2 Gy-
air/msec

P  F (0.2 Gy) / 1 msec ( y)

= 10 ω = 1 ω = 0 1= 100

0.2 Gy-air/min

ω = 1000 ω = ?

1 min from ?1 msec time

ω = 10 ω = 1 ω = 0.1ω = 100ω = 1000 ω = ?

Investigation

• Determine

– Power  (kW) → fission rate →dose rate vs. time  (air and tissue)
– Energy (kJ) → fissions → total dose vs. time (air and tissue)Energy (kJ)  fissions  total dose   vs. time   (air and tissue)
– Reactivity, inverse period vs. time
– Total dose and dose rate for minimum excursion

• Examine

– Low-power excursion for two disparate application models
– Range of reactivity insertion values and modalities (step and ramp)Range of reactivity insertion values and modalities (step and ramp)
– Total Doses at times after detection - assume  up to 1 min after trip
– Three detection criteria

• 0.2 Gy/min-air,  0.2 Gy/min-tissue, and  0.2 Gy total dose
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Methodology

• Critical parameters

– total fissions to 0.2 Gy (air and tissue)
fi i t f 0 2 G / i i d ti– fission rate for 0.2 Gy/min air and tissue

• Transient parameters  - MCNP5-1.60, published data

• Six-group point kinetics and feedback equations

– power, energy, reactivity, inverse period vs. time

• “Level 1” PKE simulation at Low Power• Level 1  PKE simulation at Low Power

• Complete time dependent excursion power history

• Times  0.5, 2.0, 5.0, 10.0, 20.0, 60 sec after detection
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Two Application Models

U(100)-H2O

Air

nnnn dcfLD *** Φ= ν

γ ν dcfLD *** Φ=

2 m
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LEU-SOL-THERM-001
(SHEBA-II)

HEU MOD-METAL
H/X ~ 10,  2500 gU/L 12

γγ γγ ν dcfLD Φ=

]/[2.0 γDDF n +=



Critical Parameters - Total Fissions, Power, Energy

Dose 
response 

Total 
Fissions 

0 2 Gy

Total 
Energy  
(kJ)

Fission 
Rate  

(fission
/ )

Power  
(kW)  0.2 Gy (kJ) (

s/sec)
( )

LEU Solution
Air 1.36E+16 4.35E+02 2.26E+14 7.25E+00* 
Tissue 6.15E+15 1.97E+02 1.03E+14 3.28E+00 

Kinetics of Critical Excursions and ANS-8.3

13

HEU Moderated Metal
Air 8.90E+15 2.85E+02 1.48E+14 4.75E+00 
Tissue 3.90E+15 1.25E+02 6.50E+13 2.08E+00 

*7.24 kW using SCALE

Simple Kinetics and Power/Energy Equations
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Kinetics and Feedback Parameters
Parameter Name LEU Solution HEU Moderated 

Metal-Water

β 

Delayed neutron 
fraction 

7.11e-3

3.60e-3, 1.30e-3, 
1.07e-3,3.17e-3, 
9.6e-4, 3.4e-4

8.17e-3

2.40e-4,1.22e 3, 
1.28e-3,3.97e-3, 
1.04e-3,4.2e-4 

9.6e 4, 3.4e 4

λ 

Delayed neutron 
decay constants 

sec-1 

2.03e-2 

1.29e-2, 3.18e-2, 
1.10e-1, 3.18e-1, 
1.35e-0, 8.70e-0 

3.23e-2

1.29e-2, 3.18e-2, 
1.10e-1, 3.17e-1, 
1.35e-0, 8.64e-0 

Λ Neutron generation 
time (sec) 4.011e-5 7.4e-7

β/Λ Rossi alpha -1.77e+2 -1.1e+4

αT 
Temperature

feedback   

($/deg K)
-3.7e-2 -2.0e-2 
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( g )

αV 
 Void feedback

$/cc
-9.0e-4 

-6.0e-4

Kc 
Heat Capacity 

(J/kg-K)
2.16 

1.17

G 
Gas generation rate

cc/kJ
0.67 

                                  
------------ 

 

Power, Energy, Dose Rate and Total Dose
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0.2 Gy total dose occurs AFTER 0.2 
Gy/min Dose Rate

• ΔTime ~ + 2 sec  (air)

• ΔTime ~ + 24 sec  (tissue)

0.2 Gy total dose occurs BEFORE 0.2 
Gy/min dose rate

• ΔTime ~  - 88 sec  (air)

• ΔTime ~ -9 sec (tissue)



Peak Power vs Time and Reactivity 
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Time to peak power increases for decreasing reactivity
Mod metal step is fastest rise to peak for given reactivity

Inverse Period vs Reactivity and Total Dose 
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Inverse period at 0.2 Gy/min air for total dose of 0.2 Gy 
at detection is 30 msec-1 corresponds to 10-15 ¢



Inverse Period vs. ΔTime to Peak Power and 0.2 Gy

ΔT  35-45 sec before peak power 
reached  for ω ∼ 30 msec-1

Max ΔT is 12-15 sec for ω ∼100 msec-1

For ω <  30 msec-1, 0.2 Gy first
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Total Dose vs Time After 0.2 Gy/min air – Step Insertion 
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0.2 Gy within 10 sec for ~35 ¢
No detection < 25 ¢ step
Dose at 1 min ~ 1 Gy

0.2 Gy within 10 sec for ~35 ¢
No detection < 15 ¢ step (B-M ‘93)
Dose at 1 min ~ 1 Gy



Total Dose vs Time After 0.2 Gy/min air - Ramp Insertion
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0.2 Gy within 10 sec for ~7.5 ¢/min
No detection < 1.5 ¢/min 
Dose at 1 Min ~ 1 Gy

0.2 Gy within 10 sec for ~9 ¢/min
No detection < 0.5 ¢/min
Dose at 1 Min ~ 1 Gy

Total Dose vs time After 0.2 Gy/min in tissue
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0.2 Gy within 20 sec for < 25¢
No detection < 15¢  step
(vice 25 for dose rate in air)
Dose at 1 Min ~ 0.5 Gy

0.2 Gy within 20 sec for < 1.5 ¢/min
No detection < 0.4 ¢/min ramp
(vice 0.5 ¢/min for dose rate in air)



Total Dose vs Time after 0.2 Gy (tissue) detection
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0.2 Gy total dose tissue “within 60 sec” 
-close to ANS-8.3 Appendix A (step of few cents)  
- yet peak power is LOWER than 0.2 Gy/min air 

Conclusion

• Critical excursions kinetics and ANS-8.3 detection criteria - problematic

• Delay time assumption results in much larger doses than expected

• Dose rate in air vulnerabilities:

GREATER than  0.2 Gy tissue  at detection for small reactivity insertions
GREATER than  1 Gy after 1 minute from detection
LIMITED reactivity insertion  (step and ramp) for human reaction and 0.2 Gy

• Optimal time is ~ 12-15 sec after detection for ω ~ 100 msec-1 

• Excursions with  ω < 30 msec-1 require detection based on total dose or fissions

• Detection criterion based on minimum excursion kinetics can be justified

• CAAS specification for  other than dose or dose rate (trip on minimum period)
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