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Analysis of keff and fraction critical

This paper investigates the relationship between keff and 
the fraction critical size of fissile bodies.

Previous recent work in this area has tended to use only 
numerical methods. From the UK, some examples are:

Venner, Haley and Bowden, (ICNC 2003)
Prescott and Walker, (WPC/P168, 1990) 

This paper uses both analytic and numerical methodsThis paper uses both analytic and numerical methods

Analytic methods help to explain the underlying physics.



Definitions – keff , fx and fm

keff (or k-effective) is the effective neutron multiplication factor given by

rateproductionneutron

Fraction critical is the ratio of a safe value to the corresponding critical 
value 

ratelossneutron
rateproductionneutronkeff =

sizecritical
sizesafelimitingfxs =

masscritical
masssafelimitingfms =
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Safe values are used to set safety limits

Some UK prescriptions for safety limits are:

• k + uncertainties < 0 95 (e g for Pu and HEU)• keff + uncertainties < 0.95 (e.g. for Pu and HEU)
fxs = 0.9 (safe dimension limit)
fms = 0.75 (safe mass limit)
keff + uncertainties < 0.98 (e.g. for LEU)

We already know that there is no simple exact equivalence 
b t k d f ti iti lbetween keff and fraction critical.

On most plant, operators can control mass and size (etc.) 
but have no direct control over keff.

Buckling gives the variation of keff with size

k

Buckling is an approximate (but useful) solution to the 
Transport Equations.
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Buckling gives the variation of keff with size

k

Buckling is an approximate (but useful) solution to the 
Transport Equations.
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Buckling in z-notation
The relationship between size and reactivity is given by:

λπ= zMx
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where

So z is the reciprocal of the square root of the leakage.

A critical size is only possible if k∞ > 1



MONK results for reactivity versus size

keff = -0.5032x2 + 1.7124x - 0.2047
R2 = 0.9997
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keff = -0.5032x2 + 1.7124x - 0.2047
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Safe fraction critical size, fxs, in z-notation

safesafe zMx −= λπ
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or, normalised relative to the critical values:
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Fraction critical size for spherical Pu/water systems
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Fraction critical size for spherical Pu/water systems
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Fraction critical size for spherical U(6%)/water systems
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Fraction critical in terms of Δkeff
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This form can also be used to evaluate the effects of the the 
Monte Carlo uncertainty on keff
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The variation of fraction critical with Δkeff
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This form can also be used to evaluate the effects of the the 
Monte Carlo uncertainty on keff
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The variation of fraction critical with Δksafe
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Summary - fraction critical size (fxs = xsafe/xcritical)

Empirical safexs kf =p ca

Simplified buckling
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k-effective and fraction critical as criticality indices

A sub-critical k-effective is an absolute measure of reactivity but 
does not reveal if (or how) fault progression to criticality can 
occuroccur.

For instance, a system with k = 0.95 might progress to critical 
by, for instance, changing size, concentration, or shape.

If so, a very different fraction critical value could be calculated for 
every possible fault progression to critical.  

Fraction critical values cannot be calculated unless criticality is 
possible.

Fraction critical might not be useful in all cases – e.g. a flask 
filled with spent fuel.



Questions ?


