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Abstract

A computational method is outlined for the quantum-mechanical prediction of the whole
double-differential energy spectrum. Cross sections as calculated with the code system
MINGUS are presented for (n,xn) and (p,xn) reactions on 2°6Pb and 2°°Bi. Our approach
involves a dispersive optical model, comprehensive discrete state calculations, renormalized
particle-hole state densities, a combined MSD/MSC model for pre-equilibrium reactions and
compound nucleus calculations. The relation with the evaluation of nuclear data files is
discussed.

87



1 Introduction

Light-particle induced nuclear reactions above 10 MeV can be categorized as follows:

- elastic scattering and direct reactions to collective discrete states [1], analyzed with the
optical model and DWBA or coupled channels models. Giant resonances also belong to
this class.

- pre-equilibrium reactions [2], analyzed with semi-classical exciton and hybrid models or
quantum-mechanical multi-step direct/multi-step compound models.

- equilibrium reactions to the continuum [2], analyzed with the classical Weisskopf-Ewing
model or the quantum-mechanical Hauser-Feshbach model.

As is now well known, the pre-equilibrium reaction mechanism constitutes the bridge between
fast, direct processes and slow, compound processes and provides an explanation for the
observed high-energy tails in spectra and the smoothly forward peaked angular distributions. In
the past (and also in the Intermediate Energy Code Comparison [3]), pre-equilibrium reactions
have been analyzed mainly with semi-classical exciton models and hybrid models which, while
not being based on first principles, provide a reasonably good description of the continuum
high-energy tail of nuclear reaction spectra. The advent of more rigorous pre-equilibrium
theories, such as that of Feshbach, Kerman and Koonin [4], and the simultaneous development
of fast computers, enabled to perform quantum-mechanical pre-equilibrium calculations. After
pioneering work of Tamura et al. [5] and Bonetti et al. [6], there has now been reached
a scientifically healthy situation with several independent implementations of both multi-step
direct (MSD) and multi-step compound (MSC) models. Although several controversies about
both theoretical (such as causality problems in the MSD theory [7, 8]) and practical aspects
still exist, there is nevertheless a tendency that quantum-mechanical pre-equilibrium models
explain the experimental double-differential data better than the classical models. Eventually,
they may replace the latter if the systematic behavior of the remaining adjustable parameter(s)
is under control. The two most important generalizations of the present quantum-mechanical
pre-equilibrium models that are still required are multiple pre-equilibrium emission (which is
currently being investigated [9]) and a general description of complex particle emission.

There have been several computational analyses of nuclear reaction spectra that include
more than one of the reaction mechanisms mentioned in the beginning (for example, the
unified exciton model for pre-equilibrium/equilibrium processes), often with omission or a semi-
phenomenological description of the remainder (usually the collective part). Up to now, there
has been no consistent integrated quantum-mechanical approach that treats all aforementioned
reaction types on an equal footing. As a first step in that direction, we present here a complete
guantum-mechanical prediction of the whole outgoing double-differential energy spectrum of a
nucleon-induced reaction. We believe that an essential theoretical aspect of such a descrip-
tion is, besides the reaction dynamics, a consistent use of both adequate optical models and
level density prescriptions in all partial reaction models and that the essential practical aspect
is that these reaction models are implemented in one computer code. The calculations we
present here are performed with the computer code MINGUS, which calculates MSD, MSC
and compound cross sections and combines these with elastic and collective cross sections as
provided by ECIS88 [10], yielding complete double-differential outgoing spectra in one single
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run. All basic transition amplitudes and cross sections that are necessary for the MSD, MSC
and compound models are also computed by ECIS88. MINGUS is the extension of, and has
the same modular structure as, the multi-step direct code KAPSIES [11] that has been used in
the Comparison for (p,p’) reactions below 200 MeV.

Within the scope of the Comparison, we present here our recent results for several nucleon
induced reactions on 2°®Pb and 2°°Bi. First, we give an outline of the neutron dispersive optical
model that we use throughout this work and test it against experimental total cross sections
and several differential elastic and inelastic measurements. Next, we discuss our discrete level
calculations, level densities and the continuum reaction models. We establish the contribution
of all reaction mechanisms by analyzing precisely measured double-differential 14 MeV (n,xn)
spectra and subsequently we proceed with higher incident energies. Finally, we indicate how
our calculations can be used for nuclear data evaluation above 20 MeV.

2 The dispersive optical model

In recent years, the theory of the nuclear optical model has been reformulated in terms of
dispersion relations that connect the real and imaginary parts of the optical potential. These
dispersion relations are a natural result of the causality principle that a scattered wave cannot
be emitted before the arrival of the incident wave. For the theoretical details we refer to
[12, 18, 14]. Here, we restrict ourselves to the essential points that are necessary to perform
practical calculations with the dispersive optical model.

The phenomenological optical model potential U has the following form:

U(rE) = ~V(EM(r) +dia,, Wo(B) L2 w1,
b () 1wt ) (1
where f,(r) represents the Woods-Saxon shape
1
WD) = TreaG—Rota)
R, = r,AY3, 2

where a, and R, are the diffuseness and radius of each component .. In the dispersive optical
model, a real volume component, AV,, and real surface potential, Vp, (the latter is usually
zero in a conventional optical model potential) are connected to the imaginary volume, W, and
surface, Wp, components by means of the dispersion relations

P = Wp(E")

dE, VD(E) = ; E — E dE/ (3)

El

If one assumes that the geometry of the real and imaginary volume parts are the same, the
real volume potential of Eq. (1) can be written as the sum of the Hartree-Fock potential and

the extra volume component
V(E) = Vu(E)+ AV,(E). (4)

In general, Egs. (3) cannot be solved analytically. However, under the reasonable assumption
[12] that the imaginary potential is symmetric with respect to the Fermi energy Er (which is
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defined as the energy halfway the last occupied and the first unoccupied shell), we can rewrite
the dispersion relation as

2 o W(E") ,
V(E) = =(E - EF)P/EF FE - (= EE (5)

This equation holds for either the surface or volume term. Following Delaroche [15], we can
give the analytical solution for two special, frequently occurring, cases. Let z = E — 2Ep. Then

a/ The imaginary potential has the form

Er<E<E, : WE)=0
E.<E<E, : WE)=g(E-E,)
Ey<E<oco : W(E)=g(E,— E,). (6)

Usually, this form occurs for the imaginary volume potential W. With Eq. (5) we obtain
for the real potential

V(E) = Z[(B- E.)log

Eb—E (Eb+2>
EQ_E’+(Ea+z)log E. 12

Ey+ 2
DA, o)

+ (Eb - Ea)log

b/ The imaginary potential has the form

Er<E<E, : W(E) = al(E - Ep)
E, < E<E, : W(_E):bl(Eb—E)
Eyz<E<oo : W(E)=0. (8)

Usually, this form occurs for the imaginary surface potential Wp. With Eq. (5) we obtain
for the real potential
V(E) = Z(E - Er)llog|(Ea - E)(Eq+ 2)| - 2log|E — Er]]

b_1 _ E,-F Ea+z)]
+ w[(Eb E)logE El+(Eb+z)log<Eb+z . 9)

a

A result of the dispersion relation formalism is that in the presence of an imaginary surface
potential, the optical model potential (1) is extended with a real surface term

VD = 4auDVD(E)df11;;‘(T). | (10)

The two cases a/ and b/ apply to the neutron optical model that we adopt for 2°Pb. We use the
optical model parameters of Johnson et al. [16] together with the aforementioned dispersion
relations.

The parameters for the Hartree-Fock potential are

Vu(E) = 46.4exp(~0.31(F — Er)/46.4) MeV, r,,, = 1.24 fm, a,, = 0.68 fm, (11)

with Fermi energy Er = —6 MeV.
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Figure 1: Total neutron cross section for *°® Pb as calculated with ECIS88: (a) Non-relativistic case , (b) Relativistic
case. The experimental data are from [17].

The imaginary volume potential and geometry are parametrized as

E<10MeV : W(E)=0
10< E<50MeV : W(E)=0.17(E - 10) MeV
E>50MeV : W(E)=6.8MeV
re =1.24fm , a, = 0.68 fm. (12)

Using Eq. (7), the extra real volume component of Eq. (4) can be calculated.
The imaginary surface potential and geometry are given by:

E <10 MeV : Wp(E)=04(FE — Erp) MeV
10< E<72MeV : Wp(E)=—0.103(E — 72) MeV
E>72MeV : Wp(E)=0
Twp = 1.27fm |,  ay,, = 0.58 fm. (13)

Using Eg. (9), the real surface contribution V, can be calculated.
The spin-orbit parameters are

Vio = 5.75 MeV, r,,=1.105fm, a,, = 0.50 fm. (14)

This parametrization results in a single dispersive optical model for neutrons that gives good
agreement with measured total and elastic scattering cross sections from several keV up to 165
MeV. Infig. 1(a) we have displayed a comparison between the total cross sections as calculated
by ECIS88 and recent experimental data [17]. We stress that the analysis by Johnson et al.
was performed without taking into account relativistic kinematics. To indicate the significance
of this, we have displayed in fig. 1(b) the calculated results including relativistic effects. It is
obvious that a re-tuning of the optical model parameters is required if one turns to a relativistic
description. An additional serious option for improvement would be to replace, for all energies
[18], the Schrodinger equation by the Dirac equation in the optical model calculations. In this
work, however, we restrict ourselves to the combination of the dispersive optical model with
parameters as given in (11-14) and non-relativistic kinematics.

In fig. 2, we have depicted the elastic cross section for several energies. Without exception,
there is excellent agreement with measured elastic angular distributions, also at energies above
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Figure 2: Differential cross sections for neutron elastic scattering on ?°®Pb at (a) 11 MeV, (b) 14 MeV, (c) 20 MeV,
(d) 22 MeV, (e) 24 MeV, (f) 26 MeV, (g) 30 MeV, (h) 40 MeV, (i) 65 MeV, (j) 96 MeV, (k) 136 MeV and (l) 155 MeV.
The calculations were performed with ECIS88 using the optical model parameters by Johnson et al. [16].

92



40 MeV which were not published in [16]. The conclusion is that for neutrons on 2°Pb there is
a unique optical model that predicts the total and the elastic scattering cross sections with good
accuracy. The relevance of this in the present work is that we can safely rely on this optical
model for the prediction of double-differential reaction spectra involving neutron energies up to
150 MeV.

For protons, we use the parametrization of [19], which is also reliable up to at least 150 MeV.

3 Direct reactions to discrete states

After establishing the optical model, we can start with the description of the inelastic reactions
to discrete states. We aim at a full treatment of collective effects. Therefore, in order not to miss
any collective strength, our calculation includes 70 discrete levels of 2°®Pb for which the spin,
parity and deformation lengths 6, are known. In this way, we avoid a simulation of the collective
part of the spectrum by the continuum MSD mechanism. For each level, we performed a DWBA
vibrational model calculation with ECIS88. The discrete state parameters were obtained from
a 35 MeV proton inelastic scattering analysis by Wagner et al. [20]. Since the deformation
parameters 5, of Ref. [20] were obtained with the help of the Becchetti-Greenlees optical
potential, which does not contain a real surface term, we have transformed the dispersive
optical model into a form without a real surface potential. This can be accomplished by adding
the real surface term (9) to the real volume term (4). Then, one can construct an equivalent
form of the original dispersive optical model that contains an energy-dependent radius for a
modified effective real volume potential. This is a necessary operation before one can perform
a consistent transformation of the deformation parameters of [20] into deformation lengths and
vice versa for inelastic scattering at another incident energy. Formally, for the deformation
length of each level we have

6L = EG.RBG
Zeal(E).Rr(-eal(E)
= [B"8(E).R™%(E), (15)

where 2% and REB¢ are the deformation parameter and (Becchetti-Greenlees) radius from Ref.
[20] and the other quantities are associated with an inelastic scattering at an incident energy E.
Note that this relationship holds for both the real and the imaginary part of the potential. In our
calculations with ECIS88, the deformation lengths are automatically transformed to deformation
parameters for each different component of the optical potential.

To test this procedure, we have compared DWBA calculations at 11 and 25.7 MeV neutron
inelastic scattering on 2°®Pb for the first 3- and 5~ states with experiment [21]. Figure 3 shows
that the deformation lengths as inferred from the 35 MeV (p,p’) reaction of Ref. [20] result in a
good prediction of the inelastic angular distribution. Adjustment of the deformation parameters
may lead to an even better agreement [22], especially for low incident energies (for which a
coupled channels calculation may be more appropriate [23]), but here we do not address to
this since we merely want to demonstrate the global predictive power of our approach.

Given the succes of predicting the cross sections corresponding to the first 3= and 5~ state, we
can compare the calculated cross sections for all 70 states with experimental double-differential
spectra. This can be achieved by simulating the experimental spreading and the spreading of
the spectroscopic strength by a Gaussian broadening of the cross section for each state. We
fix the width of this Gaussian at the elastic peak. Then, if the experiment is of a time-of-flight
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Figure 3: Differential inelastic cross section for neutrons on 2°¢Pb at (a-b) 11 MeV, (c-d) 25.7 MeV, using DWBA
calculations by ECIS88 and deformation lengths derived from [20].

nature (which is the case for the (n,n’) reactions we study in this paper) and the spreading of the
experimental resolution is much larger than the spectroscopic spreading, the width decreases
as E3/2 for lower outgoing energies.

By including this broadening of the discrete states one can perform an accurate investigation
of the overlap of the smooth MSD region, basically of a single-particle nature, and the more
structured collective region. Only hereafter, one can can draw meaningful conclusions on the
MSD contribution and its associated parameters. In some previous analyses of (pre-equilibrium)
reactions to the continuum, the collective part of the spectrum was predicted by a closed-form
formula [24] for the angle-integrated cross sections for the first 2* and 3~ state. Recently, there
has been evidence [25, 26] that this closed-form expression fails to give consistent good results
upon varying incident energy. The calculations displayed in section 9 show that our complete
DWBA approach solves this problem and in addition provides an adequate description of the
fluctuations in the high-energy tail at all angles.

It is obvious that the inclusion of an extensive discrete level scheme in the calculations for the
high-energy tail enables a reliable estimate of the compound formation cross section (defined
as the total reaction cross section minus the integrated collective and MSD cross section). This
is essential for a precise calculation of the MSC and compound contribution.
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4 Level density

For the description of reactions to the continuum, we aim at a consistent use of level density
prescriptions for both the pre-equilibrium and equilibrium models. A major role in level density
models is played by the level density parameter a. The parametrization ¢ = A/k MeV™!
(where & ~ 8), which is frequently employed in pre-equilibrium calculations, is not adequate in
the neighborhood of magic nuclei and certainly not for the 2°®Pb and 2°°Bi nuclei we study here.
Instead, marked shell effects appear for these nuclei and these effects manifest themselves
by an associated decrease of the level density parameter at the binding energy [27]. It has
been argued by Ignatyuk et al. [28] that these shell effects disappear with increasing excitation
energy so that at sufficiently high excitation energy a simple linear mass dependence of the
level density parameter is recovered. To incorporate the shell effects in our calculations, we
have adopted the parametrization of Ignatyuk et al. for the level density parameter « as a
function of the excitation energy E.:

f(E:)0W

o(E;) = a(l - =

) (16)

where 6W is the shell correction to the mass formula of Myers-Swiatecki [29] and a is the
asymptotic value of a at high excitation energies, parametrized as

a

1 =a+ ﬂA, (1 7)
where a = 0.154 MeV~' and 8 = —6.3.10~% MeV~"'. The function f(E,) is given by
f(E;) =1-exp(—vE,), (18)

where v = 0.054 MeV~1. In fig. 1 of Ref. [28] the correspondence between the level density
parameter at the binding energy and the shell corrections is displayed. This stimulated us to
eliminate §W from Eq. (16) by imposing the boundary condition that at the binding energy the
level density parameter as deduced from Eqg. (16) must coincide with a value determined from
a conventional, energy-independent analysis. Also, Ignatyuk et al. observed that extrapolating
Eqg. (16) to too low excitation energies may be dubious, which motivated us to keep the level
density parameter constant below the neutron binding energy B. Together, this leads to the
following parametrization of the energy-dependent level density parameter:

Q(E,;) = Jdap s lf.E1;<B

f(Es:)B(1-ap/a), .
F(B)E. ), ifE, > B, (19)

where ap, being the level density parameter at the neutron binding energy, may be taken from
a standard level density table. We employ the same energy dependent level density parameter
a(E.) in both the partial and total level density formula.

For the total level density we take the backshifted Fermi gas prescription [30] given by

JF exp(2y/(a(E, — A)) (20)
12 (11/4(-Ez _A +t)5/4 )

= a(l-

w(E;) =

where A is the pairing correction and the nuclear temperature ¢ is given by
E, ~ A =at*-t. (21)
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The distribution of the nuclear states with spin J is given by

12
2J+1ex [_(J+2)}’

202

R(J) =

(22)

where ¢ is the spin cutoff factor.

For our pre-equilibrium calculations, we start with the Williams formula [31] for the partial state
density for p particles and k holes and in addition employ two extensions of this expression.
Firstly, Williams has shown that summing his combinatorial formula over all particles and holes
leads to a total level density formula with a U~! dependence whereas the commonly used
total level density formulae such as Eq. (20) show a U~5/* dependence. Therefore, we follow
Akkermans and Gruppelaar [32] by adopting a renormalization of the Williams formula, such that
upon summation over all particle and holes it coincides with the backshifted Fermi gas formula
(20). This ensures more consistency when performing both pre-equilibrium and equilibrium
calculations. Secondly, we adopt Oblozinsky’s generalization [33] of the Williams formula,
which takes the finite depth of the hole into account and enables to distinguish between bound
and unbound particle-hole configurations. These extensions lead to the following general form
for the particle-hole state density:

h
wpn(Ez) = f(E:) p‘h‘ 'ZZ 1)z+3( )(1)

'1 0j=0

X (Ex—A— Ay —iB—jF) 'O(E, — A — Epp — iB ~ jF). (23)

Here, F is the Fermi energy, B is the binding energy, Epp = [p*>+ h® + p— h]/2g is the minimum
energy required to excite p particles and A holes satisfying the Pauli principle, © is the unit step
function, g = £ is the (energy-dependent) single-particle state density, n = p + k is the exciton
number and A4, » = [p(p — 1) + h(h — 1)]/4g is the Pauli correction factor. The function f(E.) is
given by [32] (E. - A)
1/2 z
f(E) ( )/ a1/4(Ex__A+t)5/4'

(24)

For MSC calculations, we use exactly Eg. (23) and for MSD we use Eq. (23) with B — co. The
distribution of the particle-hole states with spin J is given by

2J + 1 [_(J+§)2}.

R.(J) = (25)

———> €
w1/2p3/243 no?

5 Multi-step direct reactions

For excitation energies above a few MeV, it is no longer possible to distinguish between isolated
excited states. A natural extension of discrete direct reactions to the continuum part of the
spectrum is then provided by the multi-step direct (MSD) mechanism. Again, for relatively
high outgoing energies, the reaction proceeds by a direct-like reaction mechanism. In this
case however, the high level density of the residual nucleus necessitates statistical postulates
in order to obtain practicable formulae for the analysis of these processes. When a reaction
proceeds by the MSD mechanism, it is imagined that at least one particle is in the continuum
and that at each subsequent step of the reaction a new particle-hole pair is created. After
one or a few steps, the continuum particle is emitted in a direction that is still coupled to
the initial direction. This, together with the high density of states, explains the observed
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(energy averaged) smooth forward peaked angular distributions (for examples, see [2]). The
three most prominent MSD theories are those of Feshbach, Kerman and Koonin (FKK) [4],
Tamura, Udagawa and Lenske [5] and Nishioka, Weidenmdiller and Yoshida {34]. A study
of both the theoretical [35] and practical [11] aspects of the models revealed that the FKK
model, because of a strong statistical assumption that we called leading-particle statistics, is
conceptually and computationally the most attractive. Furthermore, we concluded that, despite
their considerable conceptual differences concerning the quantum-statistical assumptions, the
three models appear to have essentially the same predictive power with respect to double-
differential cross sections. Thus, we argued that the FKK model is the most appropriate tool
for nuclear data calculations. In [8, 11], we presented a compact form of the FKK MSD cross
section that lends itself easily for implementation. It reads

d20'(Ek,Q — Ekoa Qo) _ i d20(n)(E’k,Q — Eko,QO). (26)
dQdE, ~ dQdE;
The first step cross section is given by
B2oV(Ey, Q — Ei,, Q) do(Ey, Q@ — Ey,,Qq) 1" 24
2 07 — 2 b 07
. S22+ DR ensun(B) [T e
and the n-step (n > 1) cross section can be written in the following recursive form:
d20.(n)(Ek Q — Ek Qo) m
’ o = dQ,_
a0dE, o | 40t [ B B
X PoWV(Ey, Q = By, Qoy) A0 D(Ey |, Qg — EkoaQO). (28)

deEk dQn—ldEkn_l

By definition, there is always at least one continuum particle in the MSD chain. Hence, the total
system is always unbound and the level density that appears in Eq.(27) is given by Eq.(23) with
B — oo and is restricted only by the finite depth of the hole. The quantities between brackets in
Eq. (27) are DWBA cross sections for each transferred angular momentum. In order to maintain
consistency with our discrete reaction calculations, we followed the same macroscopic DWBA
approach, only this time with much smaller, /-independent deformation parameters (see [5, 11]
for a discussion of this procedure).

We prevent double counting of collective and MSD contributions by subtracting the averaged
collective cross section from the MSD cross sections. This entails that if the discrete level
scheme of a nucleus is well documented in terms of level energy, spin, parity and deformation
length, we can extend our collective state calculations up to several MeV of excitation energy,
and the effective MSD contribution enters only gradually after a few MeV. This is the case for
the 2°8Pb and ?°°Bi nuclei we consider here.

6 Multi-step compound reactions

Multi-step compound (MSC) reactions occur at somewhat higher energies than those charac-
teristic of compound nucleus decay. In the MSC reaction mechanism, the stepwise reaction
proceeds exclusively by the bound configurations of the composite nucleus. As with compound
reactions, it is imagined that the incident particle is captured by the target nucleus but that
emission takes place before the attainment of statistical equilibrium. For MSC reactions, we
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also employ the model of Feshbach, Kerman and Koonin [4]. Our implementation of the MSC
reaction formalism follows basically the method of Chadwick and Young [25]. The differential
MSC cross section is given by

i N-1
eppe e SEGER TR e

N=1 vl

where T} is the entrance channel transmission coefficient of spin J, N the reaction stage,
n = 2N + 1 the exciton number, [ the orbital angular momentum of the emitted particle,
v designates the emission modes corresponding to An = 0,-2 and +2, (PN5(U)) is the
emission width, T'},, the damping width and T, the total width. Expressions for these widths
are given in [25]. All transmission coefficients that appear in the various components of Eq.
(29) are calculated with ECIS88, using the same optical model as used in the other reaction
mechanisms. Although MINGUS is able to calculate MSC emission up to five steps, in practice
it is sufficient to include only two stages and to consider the remainder as r-stage (equilibrium)
contribution. For the level density, we use Eq. (23) with B equal to the binding energy to ensure
that only bound particle-hole configurations are taken into account.
An important quantity in Eq. (29) is the reduction factor Rysc. Since there is a depletion
from the total reaction flux by the collective and MSD contribution, an intuitive guess for this
reduction factor would be

Rysc = Or — Udi;_ OMSD ’ (30)
where o, is the discrete, collective cross section, oy sp the total MSD cross section and o,
the reaction cross section. Indeed, the original FKK model uses this reduction factor. This is
based on the assumption that as soon as the reaction proceeds through the unbound chain,
the configuration will remain unbound until particle emission takes place. One may however
imagine that the leading particle loses a large fraction of its initial kinetic energy after one
or more successive collisions in a multi-step process. Then, instead of the process of fast
emission, some of the particle flux may flow into the bound chain and give rise to (multi-step)
compound emission. A practicable method for this P-Q cross-over effect within the FKK theory
has been discussed by Chadwick and Young [25] and by Marcinkowski et al. [26]. In our work,
we adopt the latter method and introduce a gradual absorption of the flux into subsequent
reaction steps on the basis of level density ratios. It is important to note that this P-Q transition
model reduces the MSC contribution since a significant part of the non-MSD emission flux does
not enter the 2p1h MSC-stage from the initial stage but enters the 3p2h MSC-stage from the
MSD chain. The predominance of the damping width over the emission width for the 3p2h
MSC-stage then implies that this flux almost completely propagates to the equilibration stage,
contributing to compound emission rather than MSC emission.
In our MSC calculations, we use constant wavefunctions for the bound states. The item
of using either constant or realistic wavefunctions has been subject to a lot of debate [36].
Recently, Kawano [37] has performed MSC calculations with both alternatives and found that
the differences in the calculated cross sections were small. This small difference, added to
the aforementioned reduced importance of MSC reactions this justifies our use of constant
wavefunctions for practical calculations.
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7 Evaporation

We describe compound emission by the continuum Hauser-Feshbach formula [2], and include
competition by neutrons, protons, deuterons, tritons, *He, alpha particles and gamma rays.
Emission from secondary and higher stages of all these particles is taken into account (pro-
visionally with the Weisskopf-Ewing formula) until all possible outgoing channels are closed.
Throughout all multiple emissions, we assume equilibrium processes only, i.e. multiple pre-
equilibrium emission is not yet included in this work. As can also be inferred from classical
pre-equilibrium models [38], this omission will become important for incident nucleon energies
above about 50 MeV. Then, the possibility that a second non-equilibrium particle is emitted is
no longer negligible. The first steps to describe this mechanism in a quantum-mechanical way
(by means of multiple MSD emission) have been taken by Chadwick et al. [9].

8 Results

The partial reaction models that we have described are all included in the code system MIN-
GUS. The code system consists of three programs. The first program deals with the specifi-
cation of the basic nuclear reaction information, such as optical model and nuclear structure
parametrizations. With this information, all necessary input files for ECIS88 (i.e., the second
program) are created. In the third program, the results as provided by ECIS88 are processed
into double-differential spectra on the basis of the prescriptions given in this paper.

For the calculations on 2°®Pb, we use for the level density parameter at the binding energy
ag = 10.02 MeV~! and for the pairing energy P = 1.80 MeV. For 2°°Bi, these values are
ag = 11.72 MeV~! and P = 0.26 MeV. The calculations for 2°°Bi are based on the same
neutron optical model as for 2°*Pb.

There is only one adjustable parameter in our calculations, namely the l-independent deforma-
tion parameter 3 for the MSD process. In Ref. [39], we published a first attempt to parametrize
this constant for (p,p’) reactions. For the present version of our model code, we find the

parametrization:
2.0.10*

2 _
B = B Epmax(10, E.)’

where E,, is the energy of the leading particle and E, the excitation energy, both in MeV. The
factor ¢ should be rather close to one.

To get insight in the contribution of the several reaction mechanisms, and as a guideline for
calculations with energies above 20 MeV, we first analyzed precisely measured experimental
double-differential spectra [40] at 14.1 MeV, see fig. 4. The displayed agreement in the collective
region confirms that considerable predictive power can be attained by the use of independently
obtained deformation lengths, also for the levels beyond the first 3- and 5~ states. The width
of the Gaussians that broaden the discrete state cross sections (see Section 3) has been
initialized to 0.4 MeV at the elastic peak. After about 6 MeV of excitation energy the individual
states are no longer distinguishable and the MSD mechanism (which for 14 MeV reactions
consists almost entirely of one-step direct) gradually takes over. Its predominance just above
the discrete region is (at least intuitively) clear: direct processes prevail for outgoing energies
near the incident energy, both for discrete excitations and excitations just in the continuum.
For the 14 MeV reaction, the MSD parameter of Eq. (31) is ¢ = 1.2. Another conspicuous
aspect of our resuits is the minor role played by the MSC process. This is attributed to the P-Q
transitions that we have incorporated and is in line with recent work by Chadwick et al. [25] and

(31)
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Figure 4: 2°®Pb(n,xn) cross sections at 14.1 MeV: (a) 30 degrees, (b) 150 degrees and (c) angle-integrated. COL
labels the collective cross section, COM the compound contribution and ME multiple emission.

Marcinkowski et al. [26]. We also like to point out that for 2°Pb the use of an energy-dependent
level density parameter is imperative to inhibit the MSC contribution.

For somewhat higher incident neutron energies, see fig. 5, we see that the high-energy tail
becomes longer and is entirely dominated by collective and MSD processes. As discussed
in section 3, the agreement between the calculated and measured collective enhancement
is independent of incident energy (compare figs. 4 and 5). For the elastic width we have
adopted a value of 0.5 MeV for both the 20 MeV and 25.7 MeV reaction. The MSD parameter
is ¢ = 1.1 for the 20 MeV reaction and ¢ = 1.25 for the 25.7 MeV reaction. Since the c-values
show little variation between 14, 20 and 25.7 MeV, it seems that for energies up to at least 26
MeV, we can predict angle-integrated and double-differential (n,xn) spectra with good accuracy.
Unfortunately, neutron spectra for 2°6Pb or 2°°Bi and for incident neutron energies above 26
MeV do not seem to exist.

Next, we turn to the (p,xn) spectra that were considered in the Comparison. Our participating
code KAPSIES contributed with (p,p’) cross sections below 200 MeV, but was not able to predict
(p,xn) spectra. Despite the fact that we now know the experimental data and the resulits of other
codes, we like to present the (p,xn) results of MINGUS for some reactions considered in the
exercise. In fig. 6, our calculated spectra for the 25, 45 and 80 MeV (p,xn) reactions on 2°®Pb
are compared with experimental data and, for 25 MeV, with GNASH [3]. For all three incident
energies we used ¢ = 0.9 for the (p,n) process and ¢ = 1.8 for the (p,p’) process. In fig. 7,
we compare MINGUS-calculations with recent 113 MeV (p,xn) data. For this reaction we used
c = 0.9 (pn) and ¢ = 1.34 (p,p’). In general, these figures reveal that for high incident proton
energies, there is a discrepance just above the evaporation region between the calculations
and the experimental data. This is attributed to the possibility of a second fast particle (multiple
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Figure 6: Angle-integrated 2°® Pb(p,xn) cross sections at (a) 25 MeV (compared with GNASH-results), (b) 45 MeV
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and (c) 80 MeV. COM labels the compound contribution and ME multiple emission.
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Figure 7: 2°®Pb(p,xn) cross sections at 113 MeV: (a) 30 degrees and (b) 60 degrees. ME labels multiple emission.

MSD emission). Also, at the highest outgoing energies, we underestimate the experimental
data. Probably this stems from discrete (p,n) reactions that we have not yet taken into account.

9 Nuclear data evaluation

The computer code as described in this paper, as well as many of the other codes participating
in the Comparison, has two basic purposes. First, there is the iterative process of comparing
calculations with experimental data (and the results of other codes) and updating the imple-
mented physics. Once a satisfactory state of this first phase has been attained, we can proceed
with the next stage and use the code for the evaluation of nuclear data files, thereby providing
the closest possible connection between nuclear physics and applied calculations. Given the
scarcity of measured cross sections for energies above 20 MeV, it is obvious that an evaluated
file above 20 MeV should consist mainly (if not completely) of calculated data. A recommended
procedure is to tune the adjustable parameters of the model with the help of the few experimen-
tal data sets that do exist. Subsequently, one can produce the nuclear data file using repeated
calculations on an appropriate energy grid, with the determined parameters.

An evaluation of the nuclide 2°®Pb is interesting, since lead is regarded as a promising can-
didate to serve as a target material in accelerator-based transmutation concepts. Recently,
we investigated the nuclear data needs for accelerator-based transmutation of waste [41] and
tentatively proposed a high-priority list for cross sections to be included in future evaluated
files. Also, we provisionally set the upper energy limit of the data file at 100 MeV, assuming that
for higher energies the intranuclear cascade models are adequate. Although some additions
(notably multiple pre-equilibrium emission) and improvements in our model code are still re-
quired, we have created a 100 MeV proton file with MINGUS using the physical parameters as
described in the previous section and according to the format proposals made in Ref. [42]. The
output of MINGUS is automatically transformed into ENDF-6 formatted data and in this way a
file containing elastic, reaction, (p,xn), (p,xp) and transmutation cross sections is obtained.
The directory of the data file is displayed in table 1. For proton elastic scattering, we provisionally
have used (following [43]) the “nuclear + interference” expansion (LAW=5, LTP=12) for the
representation of the cross section. However, this option entails some arbitrariness in the choice
of the cut-off angle since both the Coulomb and the interference term display singular behavior
in the vicinity of zero degrees. Therefore, the option of a renormalized Legendre expansion
(LTP=2) is presently under investigation [44]. In Ref. [42], we have argued that for intermediate
energies the large number of open channels no longer enables to maintain the conventional
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Table 1: Directory of proton data file to 100 MeV for 2°2Pb (in ENDF-6 format).

MF | MT | Description

1 | 451 | General information
Elastic cross section
(p,anything) cross section
Elastic angular distribution
(p,anything) yields and
energy-angle distributions

anNn OV

3
3
6
6

classification for the partial reaction cross sections. Therefore, all non-elastic processes have
been lumped in MT5, so that MF6/MT5 now contains the total reaction cross sections. Although
in principle we have the possibility to store the cross sections of the discrete levels separately,
we use the continuum representation for the whole outgoing spectrum (if future applications
require the former alternative, we can always use discrete storage). In MF6/MTS, we first give
the neutron and proton yields and subsequently the energy-angle distribution as a tabulated
function (LANG=12). As an alternative option, we may also choose the more compact Kalbach
expansion (LANG=2) by specifying the (multi-step) compound fraction of the reaction that is
provided by MINGUS. With this choice, we would overrule the double-differential muiti-step
direct calculation. Finally, we have filled MF6/MT5 with the yields of the product nuclides using
LAW=0. This can be combined with MF3/MT5 to give the transmutation cross sections.

The evaluation (or better, creation) of the data file that we just described is completely autom-
atized. This entails that future improvements of the physics in MINGUS can immediately be
paralleled by an updated data file.

10 Conclusions

We have presented calculated results for 2°*Pb using the computer code MINGUS, which
integrates elastic, collective, MSD, MSC and compound cross sections. We use a dispersive
optical model for neutrons and include many discrete levels for the DWBA calculation of the
collective cross section. The nucleon optical models for 2°®Pb are well tested and describe the
whole energy region up to at least 150 MeV with good accuracy. Our approach to include as
many discrete levels as possible and subsequently to calculate their separate contributions to
the spectra gives a good prediction of the fluctuating high-energy tails and enables to handle
the overlap with the continuum properly. For the pre-equilibrium part of the reaction, we use the
MSD/MSC model of FKK, including the P-Q transition processes that reduce the importance
of MSC reactions. To maintain consistency with compound reaction models, we renormalized
the particle-hole state densities for the pre-equilibrium models. Our computational model
contains one adjustable parameter, namely the I-independent deformation parameter 3 for the
MSD reaction. To some extent, we have the systematics of 3 under control, but more tests
against measurement are required. For incident energies above about 50 MeV, multiple pre-
equilibrium emission needs to be included. We plan this as future work. For the evaporation
part, the Hauser-Feshbach model is employed for primary emission and the Weisskopf-Ewing
model for multiple emission. The same energy-dependent level density parameters are used in
both the partial and total level density models. We have compared our calculations with several
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experimental data sets, among others those that were considered in the Comparison. Finally,
we have created a 100 MeV proton data file with MINGUS-calculations.

In the future, we plan to extend MINGUS with other physical models, in order to describe
phenomena such as multiple pre-equilibrium emission, the excitation of giant resonances, pre-
equilibrium gamma ray emission and fission. Simultaneously we will focus on the associated
evaluation aspects.
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