Physical basis for the Kalbach angular distribution systematics
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Abstract

We show how the conservation of linear momentum is fundamental to the description of angular
distributions in preequilibrium nuclear reactions. By using state densities with linear momentum to
describe the phase space during the preequilibrium cascade, angular distributions can be derived in a
transparent way. Fermi-motion and Pauli-blocking effects are included, and correlations between the
emission particle’s energy and angle are obtained for all orders of scattering. Our model provides a
physical basis for the widely used phenomenological systematics of Kalbach, and provides a framework
for understanding the systematical properties of continuum angular distributions.
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Particles ejected during the early stages of a nuclear reaction are typically of high
energy and have forward-peaked angular distributions, since they are emitted prior
to nuclear equilibration and partially preserve the incident projectile’s direction of
motion. Refs. [1-10] describe a selection of the semiclassical theories that have been
presented to account for the angular distributions. Many works use angle-integrated
preequilibrium emission spectra from the semiclassical exciton or hybrid models, and
obtain angular distributions from the Kikuchi-Kawai (KK) [11] nucleon-nucleon scat-
tering kernel in a Fermi-gas, convoluting this quantity for multiple-scattering pro-
cesses [1-7]. The KK kernel implicitly includes momentum conservation, yet most
works hypothesize a fast leading-particle that carries all the directional information
during the cascade. This is in contradiction to the equiprobability assumption used in
the exciton model which puts all the excited particles and holes on an equal footing,
and does not follow the individual particle’s motion [2]. Another widely-used approach
is to apply the phenomenological systematics of Kalbach [12] to obtain continuum an-
gular distributions. While these systematics are useful for describing and predicting
differential cross sections, their basis in physics has remained obscure. The fact that
observed continuum preequilibrium cross sections tend to vary smoothly with angle
and energy, and lend themselves to simple parameterizations [12, 13], suggests that
they should be describable using a relatively simple model of the reaction process.
In this letter we show how Kalbach’s parameterization of the forward-peaking can
be derived theoretically using an exciton model that explicitly conserves momentum,
and that does not assume a leading particle.

Our derivation relies on the use of a state densities with linear momentum, which
we introduced in Refs. [9,10]. These densities describe the linear momentum structure
of the phase space of excited particles and holes (excitons), and are closely related to
angular-momentum-dependent state densities [10]. We use an exciton preequilibrium
model, though use of the hybrid model [4] would result in the same conclusions. The
rate for particle emission from a given preequilibrium stage containing p particles
and A holes is obtained by applying detailed balance. By explicitly conserving linear
momentum we obtain a rate for emission with energy € and direction Q given by

*A(6,Q)  2meoiny R(p) p(p — 1,h, E — €q, K — k) 1
dedQ) r2h? 47 p(p, h, E,K) ’ (1)

where m is the ejectile mass, and the reaction cross section for the inverse process
is Oiny. The composite system total energy and momentum before particle emission
are E¥ and K, respectively, and the residual nucleus energy and momentum after
emission are £ — e¢q and K — kg, respectively, all these quantities being measured
relative to the bottom of the nuclear well. The energy and momentum of the emitted
particle relative to the bottom of the nuclear well are eq = €+ By, + €, and kg, where

kol = \/EQTRCQ), Ber being the emission particle separation energy and €, the Fermi-
energy. R(p) is a correction factor to account for neutron-proton distinguishability.
The forward-peaked angular variation for a given emission energy follows directly
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from the variation of p(p — 1, h, E — g, K — kq) with angle 2 in Eq. (1). This in turn
follows from the inclusion of Fermi-motion and Pauli-blocking in the state-densities,
and ignores deviations from center-of-mass isotropy in nucleon-nucleon scattering.
During the preequilibrium cascade our model assumes that particle-hole states can
be populated providing that both energy and momentum are conserved, and the
“memory” of the initial projectile direction is not maintained solely by a fast leading-
particle, but rather it is carried by both the excited particles and the holes.

The state density with linear momentum can be expressed [10] as the product
of a state density in energy space, p(p,k, E), and a linear momentum distribution

function M(p, h, E,K),
p(p, h, E,K) = p(p, h, E) M(p,h, E,K), (2)

in analogy to the usual partitioning of the angular-momentum state den-
sity. It has units of MeV™!(MeV/c)™®, is independent of the direction of K,
and yields energy-dependent state density when integrated over all momenta,
[p(p,h, E,K)Ar K*dK =p(p,h,E). The individual momenta of the particles and
holes are oriented in random directions, and the state density with linear momentum
counts all configurations which sum to the required total energy and total momentum.
The Central Limit Theorem implies that the ensemble of the various particle and hole
momenta sum to yield a distribution of total momenta which follows a Gaussian,

M(p,h, E,K) = exp(—K?/20%), (3)

1
(27)37%53
where we call o the “momentum cut-off” (representing the width of the distribution).
This Gaussian solution has been shown to accurately describe the momentum dis-
tribution even when the number of excitons is small [10]. The momentum cut-off
can be obtained by considering the average-squared value of the exciton momentum
projections on the direction of K in a Fermi-gas nucleus, giving

o2 =n (2""§“) , (4)

where the number of excitons is n = p + h, and €,, is the average exciton energy
relative to the bottom of the nuclear well. Thus, as n increases with more excited
particles and holes, the width of the total momentum distribution increases. If the
excitation energy is not too high and p ~ h, then €, & ¢,, but in general in an
equidistant single-particle model with well-depth restrictions it is given by

2 1 1,hE) E
:p@+)Mr+,3)__+%’ (5)
ng p(p,h, E) n

av

where we use the notation that E denotes the excitation energy relative to the Fermi-
level, E = E — (p — h)¢,, and the state densities in Eq. (5) are taken from the
finite-well-depth restricted Williams formula [14].
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The expressions outlined in Egs. (2-5) can be substituted into Eq. (1) to yield
the angular distributions. Before doing so, though, we make use of a result shown in
Ref. [10] that when the angle-dependent emission rate in Eq. (1) is integrated over
all angles, it is approximately equal to the usual exciton model emission rate that
ignore linear momentum effects. Since the cross section for preequilibrium emission
is proportional to the emission rate, this enables the double-differential cross section
to be written as

d*o,(€,0)  do,(e)
dedQ) —  de

G(n, ), (6)

where do,(€)/de is the usual angle-integrated exciton model cross section for emis-
sion leaving n excitons, and the angular distribution kernel G(n,0) is normalized
so that [ G(n,0)dQ = 1. The total preequilibrium emission is a sum of the above
contributions for all preequilibrium stages.

When preequilibrium emission of a particle with momentum kg occurs, the
squared absolute value of the residual nucleus momentum is |K — ko|?= K2+ k3 —
2K kq cos 8, where 8 is the angle of emission in relation to the projectile direction.
When this is substituted into the numerator of Eq. (1), and Eqs. (2-6) are used we
obtain the angular distribution kernel,

1 2a
Gn,l) = ———— cosf). 7
(1,0) = =2 exp(acos) @
This is exactly the same expression that Kalbach used to describe the “multistep
direct” preequilibrium angular distribution. The variable “a” that she parameterized
by comparing with measurements (which governs the degree of forward-peaking) is
predicted theoretically in our model to be stage-dependent,

3K kq
a =

- b)
2nme,y

(8)

and we reiterate that the momenta in the above equation are measured from the
bottom of the nuclear well. The angular variation as the exponential of the cosine of
the scattering angle results from the Gaussian accessible phase space, and the vector
addition of momenta using the cosine formula. We list some features of our angular
distribution Eq. (7): while the Kalbach-systematic formula is of the same functional
form as our result, her expression applies to the full preequilibrium spectrum whereas
ours applies to each preequilibrium stage component. But since the 1-step scattering
is often dominant, one would expect Eq. (7) to be a good approximation for the full
spectrum. Also, even when higher steps are significant, the summation of contri-
butions from Eq. (6) with various values for a still yields a form which can be well
approximated by a shape given by Eq. (7); the conservation of linear momentum, and
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hence angle-energy correlation, is maintained for all orders of scattering; the forward-
peaking increases with incident and emission energy, and decrease with increasing n
as the incident momentum is shared among more particles and holes.

Our model also provides a framework for beginning to understand other
previously-unexplained features of the systematic behaviour of angular distributions:
why the approximate independence of Kalbach’s a parameter on incident energy be-
low 130 MeV? This would arise by the approximate canceling of the incident energy
dependence in our expression for a with the increasing number of preequilibrium
stages (each with successively flatter angular distributions) that contribute; why the
approximate independence on projectile mass for energies below 130 MeV? In our ap-
proach, a increases as the mass increase, but this is (partly, at least) compensated by
the increased number of excitons n in the preequilibrium cascade for cluster-induced
reactions. A complete understanding of the angular distributions of preequilibrium
clusters reactions would require a detailed analysis of the mechanisms involved [15].
Recent analyses by Zhang et al. [16] have investigated a preequilibrium alpha emis-
sion model, paying close attention to momentum effects. Use of the present approach
may yield a straightforward description of angular distributions in these reactions.

There are similarities between our model and exciton models which use the KK an-
gular kernel. If instead of using our Gaussian (statistical) solution, the state densities
with linear momentum are determined in a Fermi-gas by convoluting single-particle
densities while conserving energy and momentum, the KK result follows for 1-step
scattering [10]. But our result for multistep scattering differs from a convolution
of KK kernels since we do not make a leading-particle assumption. We showed in
Ref. [10] that the Gaussian solution approximates the exact Fermi-gas result very
well even when the number of excitons is small. We are further encouraged to use the
Gaussian solution since Reffo and Herman [17] found that a Gaussian angular mo-
mentum distribution described shell-model with BCS pairing calculations well, even
when there are just two excitons.

We compare angular distributions predicted by our linear-momentum conserv-
ing exciton model with a sample of experimental measurements for nucleon reactions.
Even though our model includes the quantum phenomena of Fermi-motion and Pauli-
blocking, it does not account for other quantum effects such as refraction and diffrac-
tion from the nuclear potential, and finite-size effects. At low incident energies these
have been shown to be important for obtaining sufficient backward-angle emission [2,
4,5], and result in a flatter angular distribution. A simple applications-oriented way
to account for these effects is to modify a in Eq. (7) so that it is decreased by an
energy-dependent parameter (. Writing a in terms of channel energies we then obtain

3 6in+Bin+6 C+Bem+6
3 ) ) )

( neay

and we take the Fermi-energy as 35 MeV. By analyzing a few experimental data sets,
and by making parallels with the systematics that Kalbach obtained for a, we have



found that the simple parameterization { = 9.3/,/€ where the emission energy ¢ is in
MeV, works fairly well up to 85 MeV. This factor tends to 1 for the higher emission
energies where the quantum effects become small, and increases to 2 at 20 MeV. We
calculate exciton model cross sections using the GNASH [18] nuclear model code
and analyze three different preequilibrium reactions which span a range of energies
and projectile and ejectile types: the 80-MeV induced *°Zr(p, p’) reaction measured
by Cowley et al. [19]; the 45-MeV induced *°Zr(p, n) reaction measured by Galonsky
et al. [20]; and the 26-MeV induced **Nb(n, n’) reaction measured by Marcinkowski
et al. [21]. Our results are compared with these data in Figs. 1-3, and show that our
model is able to account for the angular distributions well.
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Fig. 1. Calculated angular distributions in the 80 MeV *°Zr(p, p') reaction compared
with experimental data [19].
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Fig. 2. Calculated angular distributions in the 45 MeV *Zr(p, n) reaction compared
with experimental data [20].
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Fig. 3. Calculated angular distributions in the 26 MeV #*Nb(n, n’) reaction compared
with experimental data [21].

In summary, our linear-momentum conserving exciton model can account for
many features of preequilibrium angular distributions, as embodied in the Kalbach
systematics. Use of state densities with linear momentum enables these distributions
to be obtained easily, once the reaction mechanism has been established, using simple
(and exact) expressions. The model is straightforward to apply computationally
since the usual exciton model can be used for the angle-integrated cross section, and
describes measurements well when modifications which approximate quantum effects
are included.
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