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Abstract:

A short introduction of the Quantum molecular dynamics model and its application to
proton induced reactions is presented. There exist various models that describe heavy ion
reactions microscopically in terms of the dynamics of the interacting nucleons. The most
important models of this group are the Vlasow-Uehling—Uhlenbeck (VUU) model and the
quantum molecular dynamics (QMD) model. The VUU model provides a useful tool to
describe the one particle observables of heavy ion reactions. However, phenomena like
fragment formation can hardly be described in such a single particle theory, since they are
intimately connected to many-body correlations. The correct propagation of correlations
is lost in the VUU model, in contrast to the Molecular Dynamics models, by using the
testparticle method to obtain an ensemble average of the one particle distribution function.
If one wants to treat correlations exactly, one has to get rid of the testparticle method.
For this reason in the QMD model a single Gaussian Wigner density is used to describe
the nucleons.

The QMD model has been very successful in describing collective and many-body effects
in heavy ion collisions at intermediate and high energies (E = 50—1000 MeV /nucl.) There
is, however, no limitation to the QMD that restricts it to the description of nucleus-nucleus
collisions. Therefore we present in this article some results for p-induced reactions in the
energy regime from 80 to 800 MeV.
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1 The QMD model

In the QMD model nucleons are described as Wigner densities of a boosted Gaussian
wave packet with fixed width

1 (r; — rip(t))? 2L
fi(ri, piyt) = WGXP {—'—ﬁ— - (Pi— Pio(t))2ﬁ , (1)
where ry and pj are the centroids of particle 7 in coordinate and momentum space. Those
nucleons interact in the basic version of the QMD model via a local two and three-body
Skyrme interaction and a Coulomb and Yukawa interaction.

The Skyrme interaction is therefore used in it simplest form:

VSk(ri,l‘j, ri) = t26(r; — l'j) + t36(r; — rj)é(r,- —ry) . (2)

Since the momentum dependence of the Skyrme interaction is (for large momenta) in
sharp contrast with experimental data we neglect the momentum dependent effects of
the Skyrme interaction and we also assume spin-isospin saturated matter (lateron we will
reintroduce the momentum dependent interactions in a phenomenological way).

With the Gaussian nucleons (eq.(1)) one calculates the following Hamiltonfunction.
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Evaluating the integrals yields

N
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where o; is equal to 1 for protons and 0 for neutrons.

The first term denotes the kinetic energy of the centroids of the nucleons; the second
and third term are the Yukawa and Coulomb interactions, respectively, for Gaussian
shaped wave packets (1) of the nucleons. The last term represents the Skyrme part of the
interaction which can for infinite nuclear matter, be considered as a density dependent
interaction.

The parameters a, 3, and «y are adjusted to reproduce the properties of infinite nuclear
matter, i.e.,

E
= = —16 MeV
Alo=eo
P = OE/A = 0 MeV fm® (5)
89 2=go
o ou? 2E/A ~ 200 MeV  (Soft eos)
= : =
06° oo 380 MeV (Hard eos)

In order to obtain a reasonable simulation of finite nuclei, we adjust the two Yukawa
parameters Vyux and yyue (the Yukawa potential also gives a density dependent contri-
bution to the equation of state, which must be taken into account when adjusting the
parameters).

It has been emphasized [1, 2, 3, 4] that non—equilibrium effects will play an important
role in a realistic treatment of heavy ion collisions. The most pronounced effect can
be expected from the momentum dependence of the nuclear interaction which leads to
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an additional repulsion between the nucleons. For the computation of such momentum

dependent interactions (mdi) we parametrized the momentum dependence of the real part

of the optical p-nucleus potential, in order to substitute the term proportional to k% in

the Skyrme interaction, which is in striking contrast to the data above Erq, ~ 150A MeV.
We get

Umai = 61n?[¢/ (p; — p;)? + 1)8(r; — r;) (6)

with § = 1.57 MeV and € = 5 x 1074 MeV~2,

When using the mdi, one has to readjust the force parameters in order to yield the
same nuclear matter properties as without mdi.

One deficiency of the model is that the nuclear ground state cannot be simulated in a
reasonable fashion, because of the absence of the Fermi motion, generated by the Pauli
exclusion principle.

Wilets et al. [5, 6, 7] suggested that the Pauli exclusion principle might be simulated
by a momentum dependent repulsive potential. Later on several forms of this potential
were introduced, yielding a reasonable reproduction of gross thermostatic properties (8,
9, 10, 11].

We employ the Gaussian Pauli potential introduced by Dorso et al. [8, 11]. With such
a potential the total energy of the “free” Fermigas is given by:

EtFotG = Eyin + EPau = Z <V p,% + m2 — m)

1

o h 2 fp?‘ p2
+ - V au § T €X - - L J X 67'"1"60','0' 7
2; F (qopo) p[ 23~ 293 ey (1)

where o; and 7; denote the spin—isospin index of nucleon i.

The parameters of the several manifestations of the QMD model can be found in the
[13]:

Now the numerical simulation of the collision takes place in three steps. First the
projectile and target are initialized in their rest frames. Therefore a Metropolis algorith
is used to initialize the nuclei in their groundstate. This procedure yields nuclei that are
absolutely stable and do not evaporate any nucleons.

Successfully initialized nuclei are then boosted towards each other with the proper
center of mass velocities using relativistic kinematics. The centroids of each Gaussian are
then propagated corresponding to the Hamilton equations with the Hamiltonian of eq. (4)
in Runge-Kutta integration routine with time steps ranging from 0.2 to 0.4 fm/c.

After each integration step the hard N-N collisions are treated in the same way as in
the VUU and INC models via a stochastic scattering term. Two nucleons can scatter
if the spatial distance of the centroids of their Gaussians is smaller than \/0tot/m. The
energy and angular distributions of the experimental differential scattering cross section
d?0 /d\/sd2 are reproduced on the average. Inelastic collisions lead to the formation of
Delta particles, which can be reabsorbed in the inverse reaction. We do not incorporate
free (s—wave) pions here, unlike the VUU model. Whenever a collision occurs, we check the
phase—space distribution around the final states of the scattering partners. We determine
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the ratios P, P, of the final phase spaces which are already occupied by other nucleons.
The collision is then blocked with the probability

PBlock = min[l, P1 . Pg] . (8)

Whenever a collision is blocked, the momenta of the scattering partners are replaced
by the values they had prior to the scattering.

2 Results

Preequilibrium neutron emission has been measured recently for the inclusive reactions p
+ Al, Zr, Pb at E, = 80,120and 160 MeV [16] as well as for 256 and 800 MeV 17]. It
has been reported [18, 19, 20, 21] that in this energy regime semi classical preequilibrium
models, which are based on an intranuclear nucleon—nucleon collision process, fail to
reproduce the angular distributions. In order to describe the data more appropriately a
multistep model based on the Feshbach-Kerman-Koonin (FKK) [22] formalism with at
least two or more incoherent direct nucleon—nucleon interactions has been used [16]. Since
the QMD model follows the trajectories of all nucleons microscopically and treats both
the hard nucleon—nucleon scattering and the soft nucleon—nucleon interaction, it should
be equally successful in describing these reactions.

The experimental and calculated c.m. energy spectra of neutrons emitted at different
laboratory angles are shown in figs. 1 for the Pb target at 80,160,256 and 800 MeV incident
proton energy. Both the data and the calculations show a characteristic transition from
a weak neutron energy dependence at forward angles to an almost exponential shape
at backward angles. This clearly indicates that the system is not equilibrated. So we
conclude that the failure of the previous preequilibrium models to describe the angular
dependence of the data is due to the neglection of second and higher order collisions.
The treatment of the collisions within the quantum mechanical model of Feshbach et al.
gives a similar agreement with the data, which implies that the quantal treatment of the
statistical multistep direct emissions is well reproduced with the stochastic collision term
in the QMD model. The detailed form of the nucleon—nucleon potential, which is the
essential input for e.g., the Feshbach-Kerman-Koonin theory, seems to be unimportant
at these high energies.

A more detailed inspection of 1 shows that the QMD model describes the backward
spectra quite good, but fails to give a reasonable reproduction of the neutron spectra at
the very forward angles. In this case the QMD fails to reproduce the high energy neutrons.

In addition to figure 1 we show in fig. 2 the angular distributions of the same double
differential cross sections for the Al, Zr and Pb target for neutrons with c.m. energies of
35,55,75 and 105 MeV, respectively. Again it can be seen that the QMD model describes
the data quite well. :

All the results presented here have been obtained with the dynamical QMD model
alone. A second step, that describes the statistical evaporation of neutrons from the
excited residue, has, up to now, not been included. In the case of the heavy ion reactions
it has, however, been shown that such a secondary evaporation (of intermediate mass
fragments) is necessary for the description of multifragmentation data (for details see
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Ref. [14]). In this case we have used a statistical multifragmentation model for the
description of the equilibrium decay of all excited prefragments.

It was for this reason that we have implemented the Paulipotential into the QMD, in
order to get a well defined, fermionic ground state for the residue. Having the ground
state energy and the total energy of the residue we then can easily calculate the excitation
energy and use this value as input for the evaporation step.

Without such a Paulipotential the excitation energy the residue is, in principle, not
defined. As a very crude approximation one can use a) the energy this residue would
have when it is initialized in the model, or b) the experimental ground state energy. Both
cases, however, incorporate a large uncertainty in the excitation energy, especially if the
case b) is used.

The effect of the evaporation step on the neutron spectra has not yet been studied, we
can however show that the inclusion of the Paulipotential by itself does not change any
observables. For this reason we show in fig 3 the neutron spectra for the p (800 MeV) +
Al reaction obtained with Paulipotential (open symbols) and without (full symbols). The
full line shows the experimental data of [17].

In conclusion we have shown that the semiclassical QMD model gives a reasonable
reproduction of both the qualitative and quantitative behavior of neutron spectra in
proton induced reactions in the bombarding energy interval between 80 and 800 MeV.
The agreement between the calculations and the data is, however, by far not perfect, and
may be improved by the inclusion of a secondary evaporation step.

The calculations also suffer from a very poor statistics. All the results presented here
have been sampled from about 2000 Monte Carlo events for each system. For detailed
comparison to the data at least 20000 events are needed.
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Figure 1:

Neutron energy spectra in the c.m. frame for the reactions p(80, 160, 256, 800MeV) + Pb
at different laboratory angles as indicated. The symbols show the QMD calculation while

the full line represents the data of [16, 17].
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p (120 MeV)
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Figure 2:

Angular dlstrlbutlons for neutron with c.m. energies of 35, 55, 75, and 105 MeV in
reactions p(120MeV) + Al, Zr, Pb. The symbols show the QMD calculatlon while the full
line represents the data of [16]
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p (800 MeV) + Al
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Figure 3:
Neutron energy spectra in the c.m. frame for the reactions p(800MeV) + Al at differ-
ent laboratory angles as indicated. The symbols show the QMD calculation with (open
symbols) and without (full) symbols) while the full line represents the data of [16].
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