Study of the Hybrid Cu-Cl Cycle for Nuclear Hydrogen Production

Sam Suppiah, J. Li and R. Sadhankar
Atomic Energy of Canada Limited
Chalk River Laboratories
Canada

Michele Lewis et al
Argonne National Laboratory
U.S.A.

Third Information Exchange Meeting on the Nuclear Production of Hydrogen, Oarai, Japan, 5-7 October
GenIV Reactor Systems

- Six Reactor Systems:
 - Gas-Cooled Fast Reactor (GFR)
 - Lead-Cooled Fast Reactor (LFR)
 - Molten Salt Reactor (MSR)
 - Sodium-Cooled Fast Reactor (SFR)
 - Supercritical-Water-cooled Reactor (SCWR)
 - Very-High-Temperature Reactor (VHTR)

Main interest for Canada
CANDU Technology
Evolutionary Development for 60 Years
1940’s – Heavy Water Moderated Research Reactors (Gen-0)
1950’s – CANDU Prototype (Gen-I)
1960’s – Large CANDU Commercial Plants (Gen-I+)
1970’s – Multi-Unit CANDU Plants (Gen-II)
1980’s – CANDU-6 (Gen-II+)
1990’s – CANDU-9 (Gen-III)
2000’s – ACR (Gen-III+)
2010’s – SCWR (Gen-IV)

Evolutionary product innovation strategy
SCWR makes sense for utilities

- Nuclear: 20%
- Supercritical coal: 20%
- Other: 2%
- Subcritical coal + gas + hydro: 58%

Nuclear + SC Fossil = SCWR
SCWR Objectives

- Major economic advantage
- High level of safety
- Flexible fuel cycle system(s)
- Direct and Indirect Production of H$_2$
- Direct SCW cycle (no steam generators)
- Higher efficiency (>44%)
- Turbine technology available
- Operating conditions:
 - Pressure: ~25 MPa.
 - Outlet Temperature: 500°C-650°C
Also channel design option with multi-stream products
As you would have guessed from Alistair Miller’s presentation yesterday, AECL is “vigorously” promoting the Hydrogen Economy
Low (Moderate?) Temperature Thermochemical Hydrogen Production

- CANDU Mark 2 SCWR meets temperature criterion of the ALTC (minimum 530 °C for the highest temperature reaction)
- The waste heat dump following the expansion of reactor coolant to 300 kPa will be very useful
- High quality waste heat for the thermal drying requirements in the copper-chlorine cycle
Step (1): \(2\text{CuCl (l)} + \text{H}_2 \text{(g)} <= 2\text{Cu} + 2\text{HCl (g)}\)

Step (2): \(4\text{CuCl (aq)} => 2\text{CuCl}_2 (\text{aq}) + 2\text{Cu}\)

Step (3): \(2\text{CuCl}_2 (\text{s}) <= 2\text{CuCl}_2 (\text{aq})\)

Step (4): \(2\text{CuCl}_2 (\text{s}) + \text{H}_2\text{O(g)} \Rightarrow \text{CuO*CuCl}_2 (\text{s}) + 2\text{HCl (g)}\)

Step (5): \(2\text{Cu} \text{(l)} + \frac{1}{2} \text{O}_2 \Rightarrow \text{CuO*CuCl}_2 (\text{s})\)

Heat

Electricity

Waste Heat

\(430 - 475°C\)

\(400°C\)

\(500°C\)

\(100°C\)

\(30-70°C \text{ T (electrolysis)}\)
Thermochemical Process Steps in ALTC – 1 Cycle

<table>
<thead>
<tr>
<th>Equ#</th>
<th>Reaction</th>
<th>Temp. Range (°C)</th>
<th>Feed/Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2Cu(s) + 2HCl(g) = 2CuCl(l) + H2(g)</td>
<td>430–475</td>
<td>Feed: Electrolytic Cu + dry HCl + Q
Output: H2 + CuCl(l) salt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4CuCl(s) = 4CuCl (aq) = 2CuCl2(aq) + 2Cu(s)
(electrolysis)</td>
<td>30–70</td>
<td>Feed: Powder/granular CuCl and HCl + V
Output: Electrolytic Cu and slurry containing HCl and CuCl2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2CuCl2(aq) = 2CuCl2(s)</td>
<td>>100</td>
<td>Feed: Slurry containing HCl and CuCl2 + Q
Output: Powder/granular CuCl2 + H2O/HCl vapours</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2CuCl2(s) + H2O(g) = CuO*CuCl2(s) + 2HCl(g)</td>
<td>400</td>
<td>Feed: Powder/granular CuCl2 + H2O(g) + Q
Output: Powder/granular CuO*CuCl2 + 2HCl (g)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CuO*CuCl2(s) = 2CuCl(l) + 1/2O2(g)</td>
<td>500</td>
<td>Feed: Powder/granular CuO* CuCl2(s) + Q
Output: Molten CuCl salt + oxygen</td>
</tr>
</tbody>
</table>

Q - Thermal energy, V - Electrical energy.
Attractiveness of ALTC-1

- High efficiency (from Scoping Flowsheet Methodology) - 41%
- Electrical energy - 39% of total energy consumption
- Low temperature requirement for heat source <530°C
- Temperature requirement for heat source met by currently existing power plant technology (e.g. thermal stations using supercritical water cycles)
- Potentially suitable to couple with AECL’s SCWR reactor
- Materials-of-construction and corrosion issues more tractable at 530°C than at higher temperatures required by other cycles
- Inexpensive raw materials as recycle agents (for example, compared to iodine for S-I cycles)
- No requirement for catalyst in thermal reactions
- No significant side reactions (?)
- Complete conversions to desired products in thermal reactions (?)
ANL (Michele Lewis et al) have shown:

- Thermodynamic viability of all reactions
- Experimental proof of principle for hydrogen generation and measurements of reaction rate
 - \[2\text{Cu} + 2\text{HCl}(g) = \text{H}_2(g) + 2\text{CuCl} \]
- Proof of principle for HCl and Oxygen generation
 - \[2\text{CuCl}_2 + \text{H}_2\text{O}(g) = \text{CuCl}_2\cdot\text{CuO} + 2\text{HCl} \]
 - \[\text{CuCl}_2\cdot\text{CuO} = 2\text{CuCl} + \frac{1}{2}\text{O}_2 \]
- Electrochemical disproportionation of CuCl in aqueous system
 - Details follow
AECL’s focus on ANL’s Cycles

- Argonne’s Low Temperature Cycle 1 (ALTC-1)
 - Aqueous electrochemical step to produce copper metal
- ALTC-3
 - Aqueous electrochemical step to produce hydrogen

\[2\text{CuCl} + 2\text{HCl} = \text{H}_2 + \text{CuCl}_2 \]

Note:
Oxygen generation at 500°C is common to ALTC-1 & 3
HCl generation reaction at 400°C is also common
Electrochemical Disproportionation of CuCl in Aqueous System (ALTC-1)

- **Dissolution**: $4\text{CuCl} + 4\text{Cl}^- = 4\text{CuCl}_2^-$
 - Dissolution necessary for aqueous process
 - CuCl is insoluble in water but dissolves in HCl
 - $\text{CuCl} + \text{HCl(aq)} = \text{CuCl}_2^-(\text{aq}) + \text{H}^+(\text{aq})$

- **Electrochemical**: $4\text{CuCl}_2^- = 2\text{Cu} + 2\text{CuCl}_2 + 4\text{Cl}^-$

- **Drying**: $2\text{CuCl}_2(\text{aq}) = 2\text{CuCl}_2(\text{s})$

- **ANL’s e-cell experimental experience**
 - **Temp**: 20-80 °C
 - 0-4M HCl, 0.01-0.3M CuCl, 0-0.1M CuCl$_2$
 - **Anode Current Density**: ~21 mA/cm2 @ 0.4 V
 - ~135 mA/cm2 @ 0.6 V
CuCl Electrolysis

GTI’s development:
- Voltage as low as 0.4V (unknown current density)
- CuCl₂ concentrations as high as 5N
- Proprietary anion exchange membrane
- Graphite plates with channel as electrodes
Preliminary AECL Experimental Results

- Graphite Electrodes
 - 0.3 M CuCl in 4M HCl
 - 0.4 to 0.8 V
 - 29 to 37 mA·cm$^{-2}$

- Copper Cathode and Platinum Anode
 - 0.3 M CuCl in 4M HCl
 - 0.5 to 0.8 V
 - 14 to 86 mA·cm$^{-2}$
Key Issues

- Optimum Operating Voltage: ALTC-1 efficiency depends on this
- CuCl₂ Concentration should be high: minimize thermal load required for water removal
- CuCl₂ separation from HCl
- Selection of the Type of E-cell – Current expertise at AECL from conventional water electrolysis, material selections for high temperature and corrosive conditions of ALTC-1 and fuel cell developments
- Cell Characteristics: concentration polarization, ionic conductivity of electrolyte, membrane etc. Current expertise at AECL

AECL would like to participate in the development of the e-cell because of its background in water electrolysis, fuel cell expertise and the new collaboration arrangement with University of Ontario Institute of Technology
ALTC-3: electrochemical step

- Cycle proposed by M. Dokiya and Y. Kotera
- Relatively simple engineering
- Higher voltage leading to higher electrical energy requirements
 - Dokiya and Kotera reported >250 mA/cm² @ 0.6 to 1.0 V
 - ANL experience:
 - Room T
 - Celemion membrane
 - 0-5M HCl, 0.01-1 M CuCl, 0-0.5 M CuCl₂
 - Anode current density ~50 mA/cm² @ 1.0 V

- **ANL did not see any H₂ produced**
- **AECL would like to explore**
Modifications to existing e-cell test facilities
Reverse Deacon Cycle (ARDC)

Michael Simpson et al.

Hallet Air Products Cycle

\[\text{H}_2\text{O}_{(g)} + \text{Cl}_2_{(g)} = 2\text{HCl} + 0.5\text{O}_2_{(g)} \]

800 °C

(Reverse Deacon Reaction)

\[2\text{HCl}_{(aq)} = \text{H}_2_{(g)} + \text{Cl}_2_{(g)} \]

25 °C, E= 2.0 V @ 4 kV/m²

(Aqueous HCl electrolysis)

ARDC Cycle

\[\text{MgCl}_2_{(s)} + \text{H}_2\text{O}_{(g)} = \text{MgO}_{(s)} + 2\text{HCl}_{(g)} \]

450 - 550 °C

\[2\text{HCl}_{(g)} = \text{H}_2_{(g)} + \text{Cl}_2_{(g)} \]

25 °C, E= 1.6V @ 8kV/m²

\[\text{MgO}_{(s)} + \text{Cl}_2_{(g)} = \text{MgCl}_2_{(s)} + 0.5\text{O}_2_{(g)} \]

Issues:
- High T Chemical reaction
- Aqueous HCl electrolysis requiring high electrical input
- At high T, HCl & O₂ recombine

Improvements:
- Lower T, suitable for SCWRs
- Prevent recombination of HCl & O₂
- Simple separation of gaseous products
Status of ARDC

- Proof of principle tests have been done (by Michael Simpson et.al.) on:
 - supporting MgCl₂ on Silicalite
 - MgCl₂ hydrolysis reaction
 - sufficient reactivity of MgCl₂ with steam
 - stability of Silicalite with acid/steam at ~500 °C
- DuPont’s CREG (Chlorine REGeneration) cell for for anhydrous HCl electrolysis:
 - 12kA/m² @ 1.7V (59% efficiency) -→ proposing to increase efficiency by operating @ 1.5V for a current density of 8 kA/m² (~66.7% efficiency)
- Need to demonstrate:
 - chlorination step
 - sufficient reactivity for chlorination step
 - repeatability of hydrolysis reaction without severe attrition
 - process optimization
 - equipment design
- According to Mike Simpson’s cycle efficiency analysis the ARDC in theory utilizes energy from a nuclear reactor more efficiently than water electrolysis by about 15%
Summary

- ANL’s ALTC-1 appealing to AECL for development work on the electrochemical step
- Significant hurdles to overcome even with ALTC-1
- AECL would explore the electrochemical step in ALTC-3
- AECL would like to explore the merits of ARDC