HTTR test program towards coupling with the IS process

T. Iyoku, N. Sakaba, S. Nakagawa, Y. Tachibana, S. Kasahara, and K. Kawasaki

Japan Atomic Energy Agency (JAEA)
Contents

1. Outline of the HTTR (High Temperature Engineering Test Reactor)

2. HTTR test program towards the HTTR-IS system
 ● Rise-to-power test of 950°C high-temperature operation mode
 ● Plan of the HTTR-IS system
 ● Simulation test of abnormal transients
 - characteristics test of nuclear heat utilization system

3. Summary
Major Objective of the HTTR project

1. Establishment of HTGR technology
 - Accumulation of long-term operation data
 - Demonstration of inherent safety feature

2. Establishment of heat utilization technology
 - Demonstration of hydrogen production system
Major Specification of the HTTR

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal power</td>
<td>30 MW</td>
</tr>
<tr>
<td>Outlet coolant temperature</td>
<td>850 °C / 950 °C</td>
</tr>
<tr>
<td>Inlet coolant temperature</td>
<td>395 °C</td>
</tr>
<tr>
<td>Primary coolant pressure</td>
<td>4 MPa</td>
</tr>
<tr>
<td>Core component</td>
<td>Graphite</td>
</tr>
<tr>
<td>Core height / diameter</td>
<td>2.9 m / 2.3 m</td>
</tr>
<tr>
<td>Uranium enrichment</td>
<td>3 – 10% (Ave. 6%)</td>
</tr>
</tbody>
</table>
Bird’s-eye View of the HTTR Reactor Building

- Air cooler
- Secondary Pressurized Water Cooler
- Intermediate Heat exchanger
- Primary Pressurized Water Cooler
- Reactor Pressure Vessel
- Reactor Containment Vessel
Block Type Fuel of the HTTR

- Fuel kernel, 600 μm
- High density PyC
- Low density PyC
- SiC
- Coated fuel particle
- Fuel compact
- Fuel rod
- Fuel assembly
- Fuel handing hole
- Dowel pin
- Graphite sleeve
- Plug
- Dowel socket, 360 mm
- 580 mm
Construction, Test and Operation Schedule of the HTTR

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Milestone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▼</td>
<td>R&Ds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▼</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▼</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▼</td>
<td></td>
</tr>
<tr>
<td>Test and</td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▼</td>
<td></td>
</tr>
</tbody>
</table>

- **Construction decided**
 - Long-term Program for Research, Development and Utilization of Nuclear Energy

- **First criticality**
 - (Nov 10)

- **Construction start**

- **30 MW, 850°C**
 - (Dec 7)

- **Fuel fabrication**

- **Fuel loading**

- **Commissioning test**

- **Criticality test**

- **Power-up test**

- **Rated power operation**

- **Safety Demonstration Test**

- **950°C**
 - (Apr 19)
HTTR Reached 950°C in Parallel Loaded Operation
Performance of heat exchangers in the MCS

- Rated operation (850°C operation)
- High-temp. test operation (950°C operation)

Heat transfer coefficient \(\times \) Heat transfer area (kW/K)

- PT-3
- RS-2
- RS-5
- PT-5

Reactor-inlet coolant temperature (°C)
Power coefficients of reactivity

Reactor power (MW)

Power coefficients of reactivity (%Dk/k/MW)

- High-temp. test operation up to 30MW
- High-temp. test operation up to 20MW (single loaded)
- High-temp. test operation up to 20MW (parallel loaded)
- Rated operation
Behavior of fission product

Rated/Single loaded
Rated/Parallel loaded
High-temp./Single loaded
High-temp/Parallel loaded

Fractional release of 88Kr [-]

Reactor power [%]
Future test program using the HTTR

Simulation tests of abnormal transients caused by the nuclear heat utilization system

- Secondary coolant reduction test
- Loss of final heat sink test, etc.

Test results will be utilized for validation of analytical code as well as both of the HTTR-IS system design and the future VHTR design.
Plan of the HTTR-IS system

- Concentric hot gas duct
- High-temperature valve
- Intermediate heat exchanger
Major objective of the HTTR-IS system

The HTTR-IS system aims to:
- establish procedures on safety design and evaluation,

- add to experience of construction, operation, and maintenances,

- establish the control technology for both of IS process and reactor,

- establish the technology on key high-temperature components, such as high-temperature valves, and

- verify analysis codes.
Summary

- HTTR achieved 950 °C of outlet coolant temperature successfully in 2004
- Simulation tests of abnormal transients caused by the nuclear heat utilization system are planned.
- Development of IS process heat application technology have been performed. In near future, IS process hydrogen production system will be coupled to the HTTR.
Thank you for your attention.