Benchmark Experiments of Accelerator Driven Systems (ADS) in Kyoto University Critical Assembly (KUCA)

C. H. Pyeon, T. Misawa, H. Unesaki, K. Mishima and S. Shiroya (Kyoto University Research Reactor Institute, Japan)

Contents

Background and Purpose

- A plan of ADSR (Kart & Lab. Project): Accelerator Driven Subcritical Reactor (ADSR) in Kyoto University Critical Assembly (KUCA) by using Fixed Field Alternating Gradient (FFAG) Accelerator
- Neutron spectrum experiments by Foil activation method
 - 14MeV neutron experiment (Pulsed neutron generator)
 - High-energy proton experiment (FFAG accelerator)
- ADS collaboration research in Japan
- IAEA benchmark problem
- Summary

Background

- ADS Research and Development:
 - producing energy and transmuting minor actinides and long-lived fission products
- A neutron source in next generation of KURRI and introduction of a new accelerator
- Injection of 150MeV proton beam into KUCA core (with Tungsten (W) target) on Aug. 2007
- Investigation of main characteristics of ADSR using KUCA core with 14MeV pulsed neutrons generator

Purpose

- Conduct feasibility study of ADSR in KURRI as <u>Energy Amplifier System</u>
- Examine subcritical neutronic characteristics through experiments in KUCA (KUCA A core + 14MeV pulsed neutron generator)
- Assess neutronic characteristics for 14MeV neutrons by MCNP analyses with nuclear data libraries
- Establish measurement techniques
 - Reaction rate distribution, Neutron spectrum, etc.
 - Subcriticality, Neutron multiplication, Neutron decay constant

FFAG Accelerator

KUCA A-core & FFAG Accelerator

KUCA A-core & 14MeV D-T Accelerator

Cockcroft-Walton type Accelerator

KUCA A-core (with Neutron guide)

Fig. KUCA A-core with neutron guide

Neutron Spectrum Experiments by 14MeV Neutrons

Fig. KUCA A-core with neutron guide

Table Activation foils with threshold energy and size

Reaction	Threshold [MeV]	Size [mm ³]
¹¹⁵ In (n, n') ^{115m} In	0.32	45 × 45 × 3
⁵⁶ Fe (n, p) ⁵⁶ Mn	2.97	45 × 45 × 5
²⁷ Al (n, α) ²⁴ Na	3.25	45 × 45 × 5
⁹² Nb (n, 2n) ^{92m} Nb	9.05	45 × 45 × 2
¹⁹⁷ Au (n, γ) ¹⁹⁸ Au	Normalization	1

♦ Irradiation

- Positions: Core center and Target
- Method: Foil activation method
- Irradiation time: 3 to 6 hrs

♦ Subcriticality

- 0.87, 1.23, 1.75%∆k/k
- ♦ MCNP-4C2 and ENDF/B-VI.2

Reaction Rates Evaluation

Table Comparison of measured reaction rates with calculated ones

Core	Threshold [MeV]	C/E (0.87%∆k/k)	C/E (1.23%∆k/k)	C/E (1.75%∆k/k)
¹¹⁵ In	0.32	2.31 ± 0.05	2.22 ± 0.05	2.10 ± 0.05
⁵⁶ Fe	2.97	0.14 ± 0.01	0.17 ± 0.01	0.20 ± 0.01
²⁷ AI	3.25	1.10 ± 0.03	1.05 ± 0.03	0.92 ± 0.03
⁹³ Nb	9.05	None	0.10 ± 0.01	None

Reaction rates evaluation

- Good: ²⁷Al within 10% error regardless of subcriticality
- ► Large discrepancy: ¹¹⁵In, ⁵⁶Fe and ⁹³Nb
- Relationship between C/E value and subcriticality

Unfolding Evaluation

Good evaluation by unfolding analyses based on measured reaction rates C. H. Pyeon, KURRI, Japan

Neutron Spectrum Experiments at FFAG accelerator

Neutrons and Protons Estimation

 About 60MeV neutron generation by about 70MeV proton injection onto ¹⁸⁴W
Useful foil of ²⁰⁹Bi covering wide range of threshold energy

TableMeasured reaction rates
obtained at FFAG acc.

Reaction	Threshold [MeV]	Measured reaction rate
²⁰⁹ Bi (n,3n) ²⁰⁷ Bi	14.42	-
²⁰⁹ Bi (n,4n) ²⁰⁶ Bi	22.55	$(1.51 \pm 0.01) \times 10^{5}$
²⁰⁹ Bi (n,5n) ²⁰⁵ Bi	29.62	$(1.01 \pm 0.03) \times 10^5$
²⁰⁹ Bi (n,6n) ²⁰⁴ Bi	38.13	$(2.37 \pm 0.02) \times 10^4$
²⁰⁹ Bi (n,7n) ²⁰³ Bi	45.37	$(6.35 \pm 0.16) \times 10^3$
²⁰⁹ Bi (n,8n) ²⁰² Bi	54.24	$(2.74 \pm 0.07) \times 10^2$
²⁰⁹ Bi (n,9n) ²⁰¹ Bi	61.69	-
²⁰⁹ Bi (n,10n) ²⁰⁰ Bi	70.89	-
²⁰⁹ Bi (n,11n) ¹⁹⁹ Bi	78.47	-
²⁰⁹ Bi (n,12n) ¹⁹⁸ Bi	87.94	-

ADS Collaboration Research in Japan

IAEA Benchmark Problem

 Phase I: Static experiments (14MeV neutrons) Reaction rates distribution, Neutron spectrum, Reactivity
Phase II: Kinetic experiments (14MeV neutrons) Neutron multiplication, Subcriticality measurement method (Rossi-α, Feynman-α, Pulsed neutrons and Neutron source multiplication (NSM) methods)
Phase III: Static and Dynamic experiments (150MeV protons) Above topics, γ-ray distribution, Power monitoring, etc.

- Fuel: Highly enriched ²³⁵U, ²³²Th, Natural Uranium
- Reflector: Polyethylene, Graphite, Aluminum, Beryllium
- Core: Any combinations of Fuel & Reflector

Publish KUCA benchmark problem in a near future

Summary

- > ADSR project (Kart & Lab. project) in KURRI
 - Energy amplifier system by ADSR
- Neutron spectrum experiments of ADSR
 - 14MeV pulsed neutrons in KUCA
 - Reaction rates evaluation: Good results by foil activation method
 - Unfolding evaluation: Feasibility of SANDII code
 - High-energy protons from FFAG accelerator
 - About 60MeV neutron generation by about 70MeV proton injection onto ¹⁸⁴W target
 - Useful activation foil of ²⁰⁹Bi covering wide range of threshold
- From 14MeV neutron results, very important and valuable information, for 150MeV proton analyses

KUCA A-core

Fig. KUCA A-core (Reference core)

Static Experiments

Fig. KUCA A-core with collimator and beam duct.

Fig. Measured Indium reaction rates distribution.

Reaction rates distribution (Foil activation method)
✓ Measure ¹¹⁵In (n, γ) ^{116m}In (Exp. error: 5%)
✓ Examine effects on subcriticality, configuration
✓ Optimize collimator and beam duct

MCNP Analyses for Static Experiments

Experiment (%∆k/k)	MCNP (JENDL-3.3) (%∆k/k)	MCNP (ENDF/B-VI.2) (%∆k/k)		
-0.68 ± 0.04	-0.68 (1.4%)	-0.67 (1.8%)		
-0.89 ± 0.05	-0.98 (5.7%)	-0.91 (3.5%)		
-1.34±0.07	-1.35 (0.3%)	-1.40 (3.9%)		
-1.76±0.09	-1.71 (2.9%)	-1.72 (2.4%)		

Table Comparison of measured subcriticality

with calculated one.

(): Relative difference, Cal. error: 0.03%∆k/k

Fig. Comparison of measured In reaction rates distribution with calculated one.

MCNP eigenvalue and point source calculations ✓ Good evaluation by MCNP within experimental error

Optical Fiber Detection System

Fig. Li reaction rates by optical fiber detection system, along to subcriticality.

Optical fiber detection system

• LiF (ZnS): ⁶Li (n, α) reaction for thermal neutrons ThO₂ (ZnS): ²³²Th fission reaction for fast neutrons

3.00

 $M_{eff} = 1 / (1 - k_{eff})$

Mexp-abs (Absolute value)

Mexp-rel (Relative value)

M_{cal-abs}(Absolute value)

M_{cal-rel} (Relative value)

4.00

5.00

Dynamic Experiments (Optical fiber system)

Pulsed neutron method (PNM)

Good evaluation of subcriticality at both core and reflector positions

Examine methodology and position dependency

Subcriticality (Source Multiplication Method)

