

Recent developments in the applications of Cyclotrons in cancer therapy

HPPA5 Yves Jongen Founder & Chief Research Officer Ion Beam Applications sa Belgium

We protect, enhance and save lives.

□ Why this presentation?

- Systemic cancer therapy based on RI
- Brachytherapy
- Proton therapy
- Carbon therapy

Systemic cancer therapy with RI

- When the caner is not limited to a well defined, primary tumor, systemic therapies must be used
- One well known solution is to graft a therapeutic (toxic) RI on a cancer cell seeking molecule
- Alpha or Auger electron emitting RI are often preferred
- The main problem is the dosimetry and treatment planning: how to assess correctly the radiation dose received by the tumor, and by the healthy organs at risk
- Pairs of diagnostic/ therapy RI are useful in this respect

- Technetium 99m, the most commonly used RI in NM is produced in reactors
- But a number of other, very important NM RI are produces with cyclotrons of higher energy energy
 - TI-201 (Cardiac studies)
 - I-123 (Thyroid, Various examinations)
- For these longer life isotopes, international distribution is possible
- Large, very powerful cyclotrons are owned by by radiopharmaceutical companies

Diagnostic (PET) RI	Therapy RI
124	131
86Y	90 Y
⁶⁴ Cu	⁶⁷ Cu
Etc!	

New high energy isotope research machine

Cyclone 70 for Arronax (Nantes, France)

- Proton 35-70 MeV 750 μA
- Deuterons 17-25 MeV, 50 μA
- Alpha 70 MeV (fixed) 35 µA
- HH+ 35 MeV(fixed) 50 μA

Main research goals

- 211At, alpha emitters
- 67Cu, 177Lu, beta emitters
- Pulsed alpha (research)

<image/>

The Nantes cyclotron in April 07

Brachytherapy

Local Eradication of a Tumor by Radioactive Implants

Prostate Brachytherapy

Pd-103 I-125

Half-life (days)
 Energy (keV)
 20-23
 Half-value-layer (mm.Pb)
 0.008
 0.02
 Biologic dose equ. (Gy)
 115
 160
 Initial dose rate (cGy/hr)
 20-24
 6-10

Cyclotrons for brachytherapy

- Large doses, lower cross-section require high current operation
 - Examples
 - 18Mev
 - 2mA on target
 - 14 cyclotrons in the same factory: 28 mA total proton beam current
- In such cyclotrons, 80% of the RF power is used for beam acceleration, 20% for building the accelerating field
- Current total accelerator efficiency are over 35%, 50% efficiencies in view !

30 kW of beam with 100 kW of electrical power

80% of the RF power is beam acceleration

The HOLY GRAIL of Radiation Therapy

Photon-Proton dose distribution comparison

Comparing IMPT, IMRT and conventional RT

Treatment room in PT

in.

Cyclotrons for proton therapy?

- □ In 1991, when we entered in PT, the consensus was that the best accelerator for PT was a synchrotron
- IBA introduced a very effective cyclotron design, today the majority of PT centers use the cyclotron technology
- Over these 15 years, users came to appreciate the advantages of cyclotrons:
 - Simplicity
 - Reliability
 - Lower cost and size
 - But, most importantly, the ability to modulate rapidly and accurately the proton beam current

IMPT: Pencil Beam Scanning principle

The cyclotron at MGH

Cyclotron opens at median plane for easy access

C230 inside view

Zoom on cyclotron center

Patient positioning in PT treatment room

A 3D View of a Proton Therapy Facility

IBA Proton Therapy System

- A Proton therapy system is much more than an accelerator
- It is a complex, multi-room system, filling a Hospital building.
- □ The total investment is around 100 M€, of which 45 M€ for the equipment
- A PT facility can treat 2500 patients/year, generating revenues in excess of 40 M€/year!

Most recent example

The University of Florida Proton Therapy Institute, Jacksonville, USA

11 IBA Particle Therapy Partners world wide

If proton therapy is so great, Why use Carbon beams?

Photons, Protons Neutrons, Carbon ions Low LET High LET

The famous experience of Dr. Harold Gray

The famous experience of Dr. Harold Gray

Oxygen Enhancement Ratio

In less space and cost than a synchrotron: a two cyclotrons phased approach

The IBA proton-carbon facility

- Superconducting isochronous cyclotron, accelerating Q/M = 1/2 ions to 400 MeV/U (H2 +, Alphas, Li6 3+, B10 5+, C12 6+, N14 7+, 016 8+, Ne20 10+)
- Design very similar to IBA PT cyclotron, but with higher magnetic field thanks to superconducting coils, and increased diameter (6.3 m vs. 4.7 m)

Engineering view of the 400 MeV/u cyclotron

During the last two years, a team of accelerator physicists at the JINR in Dubna has completed the physical design of the cyclotron

- This study has been summarized into a comprehensive design report.
- On January 8th 2007, an international design review was organized by IBA, with worlds key key superconducting cyclotron experts.
- The outcome of the review was completely positive.

The next steps for the C400 (K1600) cyclotron

- □ In 2007, the design study will continue, and focus progressively more on industrial construction issues
- The detailed design of critical subsystems, such as the superconducting coils will be subcontracted
- When the contract for a system will be signed, the final design and construction process will be launched, to reach a working prototype in 3 years
- However, some alternatives are considered to start the construction of a prototype before a sales contract is signed

Most physicians prefer a true isocentric gantry

- The gantry of Heidelberg (20 m long, 12 m diameter, 600 Tons) is often seen as too large, heavy and expensive to be selected as a solution
- □ Is it possible to build a Carbon gantry of the size and cost of a proton gantry?
- Yes, if the last magnet is superconductive!

The compact carbon gantry

Mechanical structure of gantry

Thank you

We protect, enhance and save lives.